582 research outputs found

    X-ray scattering in giant magneto-resistive multilayers

    Get PDF
    The scattering mechanisms responsible for Giant Magneto-Resistance (OMR) in magnetic multilayers are believed to be related to many aspects of the multilayer structure. X-ray scattering techniques provide a powerful method with which to study the bulk and interface morphology in these systems, and are therefore crucial in developing an understanding of the dominant factors influencing the magnitude of the OMR. Reflectivity measurements performed on a series of Co/Cu multilayers, sputter deposited onto etched silicon, reveal no variation in the interface roughness with etching voltage, the thickness of the individual layers also remaining constant. The observed decrease in the OMR cannot, therefore, be attributed to variations in spacer thickness or interfacial spin-independent scattering. Electron and X-ray Diffraction measurements suggest the reduction in GMR is due to a loss of antiferromagnetic coupling associated with a transformation of the texture from a randomly oriented to well oriented (111) polycrystalline texture, and subsequent reduction in the volume fraction of (100) oriented grains. Interfaces within Co/Cu are found to propagate with a high degree of conformality with increasing bilayer number, with an out-of-plane correlation length well in excess of 300Å. In contrast, the Co/Pt system exhibits a limiting out-of-plane correlation length of the order of 350Å arising from a columnar growth mode. X-ray Reflectivity and Diffraction measurements provide no structural interpretation for the 3-fold enhancement in the rate of increase of the saturation conductivity, as a function of spacer thickness, in Fe/Au (100) compared to Fe/Au (111), or why large oscillations in the GMR occur for the (100) orientation only. Such observations are, however, consistent with the existence of a channelling mechanism in Fe/Au (100). Grazing Incidence Fluorescence data indicates that Nb acts as a surfactant in Fe/Au (111) growth on sapphire. The influence of different defect types within multilayers has also been observed

    IODP Expedition 317: Exploring the Record of Sea-Level Change off New Zealand

    Get PDF

    Bacterial Endophytes Isolated from Plants in Natural Oil Seep Soils with Chronic Hydrocarbon Contamination

    Get PDF
    The bacterial endophytic communities of four plants growing abundantly in soils highly contaminated by hydrocarbons were analyzed through culturable and and culture-independent means. Given their tolerance to the high levels of petroleum contamination at our study site, we sought evidence that Achillea millefolium, Solidago canadensis, Trifolium aureum and Dactylis glomerata support high levels of hydrocarbon degrading endophytes. A total of 190 isolates were isolated from four plant species. The isolates were identified by partial 16S rDNA sequence analysis, with class Actinobacteria as the dominant group in all species except Solidago canadensis, which was dominated by Gammaproteobacteria. Microbacterium foliorum and Plantibacter flavus were present in all the plants, with M. foliorum showing predominance in D. glomerata and both endophytic bacterial species dominated T. aureum. More than 50% of the isolates demonstrated degradative capabilities for octanol, toluene, naphthalene, kerosene or motor oil based on sole carbon source growth screens involving the reduction of tetrazolium dye. P. flavus isolates from all the sampled plants showed growth on all the petroleum hydrocarbons substrates tested. Mineralization of toluene and naphthalene was confirmed using gas-chromatography. 16S based terminal restriction fragment length polymorphism analysis revealed significant differences between the endophytic bacterial communities showing them to be plant host specific at this site. To our knowledge, this is the first account of the degradation potential of bacterial endophytes in these commonly occurring pioneer plants that were not previously known as phytoremediating plants

    Draft Genome Sequence of Plantibacterflavus Strain 251 Isolated from a Plant Growing in a Chronically Hydrocarbon-Contaminated Site.

    Get PDF
    Plantibacter flavus isolate 251 is a bacterial endophyte isolated from an Achillea millefolium plant growing in a natural oil seep soil located in Oil Springs, Ontario, Canada. We present here a draft genome sequence of an infrequently reported genus Plantibacter, highlighting an endophytic lifestyle and biotechnological potential

    Experimental evidence for electron channeling in Fe /Au (100) superlattices

    Get PDF
    We present transport and structural data from epitaxial (100) and (111) Au/Fe superlattices grown by molecular beam epitaxy. From their analysis, we conclude that an electron channeling mechanism, due to strong specular reflection of the minority spin carrier at the Au/Fe interfaces, is responsible for the high conductivity in the (100) superlattices

    IODP Expedition 317: Exploring the Record of Sea-Level Change Off New Zealand

    Get PDF
    Expedition 317 investigated the record of global sea-level change (eustasy) within continental margin sedimentary to produce preserved sedimentary architectures. The Canterbury Basin, on the eastern margin of the South Island because of high rates of Neogene sediment supply from the uplifting Southern Alps. This sediment input results in a high-frequency (~0.1–0.5 My periods) record of depositional cyclicity that is modulated by the presence of strong ocean currents. The expedition recovered sediments as old as Eocene but focused on the sequence stratigraphy of the late Miocene to Recent, when global sea-level change was dominated by glacioeustasy. A transect of three sites was drilled on the continental shelf (Sites U1353, U1354, and U1351), plus one on the continental slope (Site U1352). The transect samples the shallow-water environment most directly affected by relative sea-level change. Lithologic boundaries, provisionally correlative with seismic sequence boundaries, have been identified in cores from each site. Continental slope Site U1352 provides a record of ocean circulation and fronts during the last ~35 My. The early Oligocene (~30 Ma) Marshall Paraconformity was the deepest target of Expedition 317 and is hypothesized to represent intensified current erosion or non-deposition associated with the initiation of thermohaline circulation in the region. Expedition 317 involved operational challenges for JOIDES Resolution, including shallow-water, continental-shelf drilling and deep penetrations. Despite these challenges, Expedition 317 set a number of records for scientific ocean drilling penetration and water-depth.ArticleScientific Drilling. 12:4-14 (2011)journal articl

    Draft Genome Sequence of Microbacterium foliorum Strain 122 Isolated from a Plant Growing in a Chronically Hydrocarbon-Contaminated Site.

    Get PDF
    Microbacterium foliorum strain 122 is a bacterial endophyte isolated from a Dactylis glomerata plant growing in a natural oil seep soil located in Oil Springs, Ontario, Canada. We present here a draft genome sequence of an endophytic strain that has promising potential in hydrocarbon degradation and plant growth promotion

    Endophytic Bacterial Community Structure and Function of Herbaceous Plants From Petroleum Hydrocarbon Contaminated and Non-contaminated Sites

    Get PDF
    Bacterial endophytes (BEs) are non-pathogenic residents of healthy plant tissues that can confer benefits to plants. Many Bacterial endophytes have been shown to contribute to plant growth and health, alleviation of plant stress and to in-planta contaminant-degradation. This study examined the endophytic bacterial communities of plants growing abundantly in a heavily hydrocarbon contaminated site, and compared them to those found in the same species at a non-contaminated. We used culture- dependent and independent methods to characterize the community structure, hydrocarbon degrading capabilities, and plant growth promoting traits of cultivable endophytes isolated from Achillea millefolium, Solidago Canadensis, and Daucus carota plants from these two sites. Culture- dependent and independent analyses revealed class Gammaproteobacteria predominated in all the plants regardless of the presence of petroleum hydrocarbon, with Pantoea spp. as largely dominant. It was interesting to note a >50% taxonomic overlap (genus level) of 16s rRNA high throughput amplicon sequences with cultivable endophytes. PERMANOVA analysis of TRFLP fragments revealed significant structural differences between endophytic bacterial communities from hydrocarbon-contaminated and non-contaminated soils—however, there was no marked difference in their functional capabilities. Pantoea spp. demonstrated plant beneficial characteristics, such as P solubilization, indole-3-acetic acid production and presence of 1-aminocyclopropane-1-carboxylate deaminase. Our findings reveal that functional capabilities of bacterial isolates being examined were not influenced by the presence of contamination; and that the stem endosphere supports ubiquitous BEs that were consistent throughout plant hosts and sites
    corecore