44 research outputs found

    How does Casimir energy fall? IV. Gravitational interaction of regularized quantum vacuum energy

    Get PDF
    Several years ago we demonstrated that the Casimir energy for perfectly reflecting and imperfectly reflecting parallel plates gravitated normally, that is, obeyed the equivalence principle. At that time the divergences in the theory were treated only formally, without proper regularization, and the coupling to gravity was limited to the canonical energy-momentum-stress tensor. Here we strengthen the result by removing both of those limitations. We consider, as a toy model, massless scalar fields interacting with semitransparent (δ\delta-function) potentials defining parallel plates, which become Dirichlet plates for strong coupling. We insert space and time point-split regulation parameters, and obtain well-defined contributions to the self- energy of each plate, and the interaction energy between the plates. (This self-energy does not vanish even in the conformally-coupled, strong-coupled limit.) We also compute the local energy density, which requires regularization near the plates. In general, the energy density includes a surface energy that resides precisely on the boundaries. This energy is also regulated. The gravitational interaction of this well-defined system is then investigated, and it is verified that the equivalence principle is satisfied.Comment: 14 pages, 4 figure

    Surface Vacuum Energy in Cutoff Models: Pressure Anomaly and Distributional Gravitational Limit

    Full text link
    Vacuum-energy calculations with ideal reflecting boundaries are plagued by boundary divergences, which presumably correspond to real (but finite) physical effects occurring near the boundary. Our working hypothesis is that the stress tensor for idealized boundary conditions with some finite cutoff should be a reasonable ad hoc model for the true situation. The theory will have a sensible renormalized limit when the cutoff is taken away; this requires making sense of the Einstein equation with a distributional source. Calculations with the standard ultraviolet cutoff reveal an inconsistency between energy and pressure similar to the one that arises in noncovariant regularizations of cosmological vacuum energy. The problem disappears, however, if the cutoff is a spatial point separation in a "neutral" direction parallel to the boundary. Here we demonstrate these claims in detail, first for a single flat reflecting wall intersected by a test boundary, then more rigorously for a region of finite cross section surrounded by four reflecting walls. We also show how the moment-expansion theorem can be applied to the distributional limits of the source and the solution of the Einstein equation, resulting in a mathematically consistent differential equation where cutoff-dependent coefficients have been identified as renormalizations of properties of the boundary. A number of issues surrounding the interpretation of these results are aired.Comment: 22 pages, 2 figures, 1 table; PACS 03.70.+k, 04.20.Cv, 11.10.G

    Systematics of the Relationship between Vacuum Energy Calculations and Heat Kernel Coefficients

    Get PDF
    Casimir energy is a nonlocal effect; its magnitude cannot be deduced from heat kernel expansions, even those including the integrated boundary terms. On the other hand, it is known that the divergent terms in the regularized (but not yet renormalized) total vacuum energy are associated with the heat kernel coefficients. Here a recent study of the relations among the eigenvalue density, the heat kernel, and the integral kernel of the operator etHe^{-t\sqrt{H}} is exploited to characterize this association completely. Various previously isolated observations about the structure of the regularized energy emerge naturally. For over 20 years controversies have persisted stemming from the fact that certain (presumably physically meaningful) terms in the renormalized vacuum energy density in the interior of a cavity become singular at the boundary and correlate to certain divergent terms in the regularized total energy. The point of view of the present paper promises to help resolve these issues.Comment: 19 pages, RevTeX; Discussion section rewritten in response to referees' comments, references added, minor typos correcte

    Casimir Energies and Pressures for δ\delta-function Potentials

    Full text link
    The Casimir energies and pressures for a massless scalar field associated with δ\delta-function potentials in 1+1 and 3+1 dimensions are calculated. For parallel plane surfaces, the results are finite, coincide with the pressures associated with Dirichlet planes in the limit of strong coupling, and for weak coupling do not possess a power-series expansion in 1+1 dimension. The relation between Casimir energies and Casimir pressures is clarified,and the former are shown to involve surface terms. The Casimir energy for a δ\delta-function spherical shell in 3+1 dimensions has an expression that reduces to the familiar result for a Dirichlet shell in the strong-coupling limit. However, the Casimir energy for finite coupling possesses a logarithmic divergence first appearing in third order in the weak-coupling expansion, which seems unremovable. The corresponding energies and pressures for a derivative of a δ\delta-function potential for the same spherical geometry generalizes the TM contributions of electrodynamics. Cancellation of divergences can occur between the TE (δ\delta-function) and TM (derivative of δ\delta-function) Casimir energies. These results clarify recent discussions in the literature.Comment: 16 pages, 1 eps figure, uses REVTeX

    Green's Dyadic Approach of the Self-Stress on a Dielectric-Diamagnetic Cylinder with Non-Uniform Speed of Light

    Full text link
    We present a Green's dyadic formulation to calculate the Casimir energy for a dielectric-diamagnetic cylinder with the speed of light differing on the inside and outside. Although the result is in general divergent, special cases are meaningful. It is pointed out how the self-stress on a purely dielectric cylinder vanishes through second order in the deviation of the permittivity from its vacuum value, in agreement with the result calculated from the sum of van der Waals forces.Comment: 8 pages, submitted to proceedings of QFEXT0

    Surface Divergences and Boundary Energies in the Casimir Effect

    Full text link
    Although Casimir, or quantum vacuum, forces between distinct bodies, or self-stresses of individual bodies, have been calculated by a variety of different methods since 1948, they have always been plagued by divergences. Some of these divergences are associated with the volume, and so may be more or less unambiguously removed, while other divergences are associated with the surface. The interpretation of these has been quite controversial. Particularly mysterious is the contradiction between finite total self-energies and surface divergences in the local energy density. In this paper we clarify the role of surface divergences.Comment: 8 pages, 1 figure, submitted to proceedings of QFEXT0

    How Does Casimir Energy Fall?

    Get PDF
    Doubt continues to linger over the reality of quantum vacuum energy. There is some question whether fluctuating fields gravitate at all, or do so anomalously. Here we show that for the simple case of parallel conducting plates, the associated Casimir energy gravitates just as required by the equivalence principle, and that therefore the inertial and gravitational masses of a system possessing Casimir energy EcE_c are both Ec/c2E_c/c^2. This simple result disproves recent claims in the literature. We clarify some pitfalls in the calculation that can lead to spurious dependences on coordinate system.Comment: 5 pages, 1 figure, REVTeX. Minor revisions, including changes in reference

    How does Casimir energy fall? III. Inertial forces on vacuum energy

    Full text link
    We have recently demonstrated that Casimir energy due to parallel plates, including its divergent parts, falls like conventional mass in a weak gravitational field. The divergent parts were suitably interpreted as renormalizing the bare masses of the plates. Here we corroborate our result regarding the inertial nature of Casimir energy by calculating the centripetal force on a Casimir apparatus rotating with constant angular speed. We show that the centripetal force is independent of the orientation of the Casimir apparatus in a frame whose origin is at the center of inertia of the apparatus.Comment: 8 pages, 2 figures, contribution to QFEXT07 proceeding

    Mathematical Aspects of Vacuum Energy on Quantum Graphs

    Get PDF
    We use quantum graphs as a model to study various mathematical aspects of the vacuum energy, such as convergence of periodic path expansions, consistency among different methods (trace formulae versus method of images) and the possible connection with the underlying classical dynamics. We derive an expansion for the vacuum energy in terms of periodic paths on the graph and prove its convergence and smooth dependence on the bond lengths of the graph. For an important special case of graphs with equal bond lengths, we derive a simpler explicit formula. The main results are derived using the trace formula. We also discuss an alternative approach using the method of images and prove that the results are consistent. This may have important consequences for other systems, since the method of images, unlike the trace formula, includes a sum over special ``bounce paths''. We succeed in showing that in our model bounce paths do not contribute to the vacuum energy. Finally, we discuss the proposed possible link between the magnitude of the vacuum energy and the type (chaotic vs. integrable) of the underlying classical dynamics. Within a random matrix model we calculate the variance of the vacuum energy over several ensembles and find evidence that the level repulsion leads to suppression of the vacuum energy.Comment: Fixed several typos, explain the use of random matrices in Section
    corecore