research

How Does Casimir Energy Fall?

Abstract

Doubt continues to linger over the reality of quantum vacuum energy. There is some question whether fluctuating fields gravitate at all, or do so anomalously. Here we show that for the simple case of parallel conducting plates, the associated Casimir energy gravitates just as required by the equivalence principle, and that therefore the inertial and gravitational masses of a system possessing Casimir energy EcE_c are both Ec/c2E_c/c^2. This simple result disproves recent claims in the literature. We clarify some pitfalls in the calculation that can lead to spurious dependences on coordinate system.Comment: 5 pages, 1 figure, REVTeX. Minor revisions, including changes in reference

    Similar works