9,707 research outputs found

    The art of being human : a project for general philosophy of science

    Get PDF
    Throughout the medieval and modern periods, in various sacred and secular guises, the unification of all forms of knowledge under the rubric of ‘science’ has been taken as the prerogative of humanity as a species. However, as our sense of species privilege has been called increasingly into question, so too has the very salience of ‘humanity’ and ‘science’ as general categories, let alone ones that might bear some essential relationship to each other. After showing how the ascendant Stanford School in the philosophy of science has contributed to this joint demystification of ‘humanity’ and ‘science’, I proceed on a more positive note to a conceptual framework for making sense of science as the art of being human. My understanding of ‘science’ is indebted to the red thread that runs from Christian theology through the Scientific Revolution and Enlightenment to the Humboldtian revival of the university as the site for the synthesis of knowledge as the culmination of self-development. Especially salient to this idea is science‘s epistemic capacity to manage modality (i.e. to determine the conditions under which possibilities can be actualised) and its political capacity to organize humanity into projects of universal concern. However, the challenge facing such an ideal in the twentyfirst century is that the predicate ‘human’ may be projected in three quite distinct ways, governed by what I call ‘ecological’, ‘biomedical’ and ‘cybernetic’ interests. Which one of these future humanities would claim today’s humans as proper ancestors and could these futures co-habit the same world thus become two important questions that general philosophy of science will need to address in the coming years

    Nonuniversal Effects in the Homogeneous Bose Gas

    Full text link
    Effective field theory predicts that the leading nonuniversal effects in the homogeneous Bose gas arise from the effective range for S-wave scattering and from an effective three-body contact interaction. We calculate the leading nonuniversal contributions to the energy density and condensate fraction and compare the predictions with results from diffusion Monte Carlo calculations by Giorgini, Boronat, and Casulleras. We give a crude determination of the strength of the three-body contact interaction for various model potentials. Accurate determinations could be obtained from diffusion Monte Carlo calculations of the energy density with higher statistics.Comment: 24 pages, RevTex, 5 ps figures, included with epsf.te

    Women secondary head teachers in England: where are they now?

    Get PDF
    The underrepresentation of women in secondary school headship in England and elsewhere is an early and longstanding theme in the women and gender in educational leadership literature. The purpose of this article is to report findings from a statistical survey of secondary school head teachers across England. Data available in the public domain on school websites have been collated during a single academic year to present a new picture of where women lead secondary schools in England. Mapping the distribution of women by local authority continues to show considerable unevenness across the country. This article argues that a geographical perspective still has value. It might influence the mobilization of resources to targeted areas and ultimately result in women’s proportionate representation in school leadership. Alongside this is a need for schools and academy trusts to comply with the Public Sector Equality Duty

    Public geographies II: being organic

    Get PDF
    This second report on ‘public geographies' considers the diverse, emergent and shifting spaces of engaging with and in public/s. Taking as its focus the more ‘organic’ rather than ‘traditional’ approach to doing public geography, as discussed in the first report, it explores the multiple and unorthodox ways in which engagements across academic-public spheres play out, and what such engagements may mean for geography/ers. The report first explores the role of the internet in ‘enabling conversations', generating a range of opportunities for public geography through websites, wikis, blogs, file-sharing sites, discussion forums and more, thinking critically about how technologies may enable/disable certain kinds of publically engaged activities. It then considers issues of process and praxis: how collaborations with groups/communities/organizations beyond academia are often unplanned, serendipitous encounters that evolve organically into research/learning/teaching endeavours; but also that personal politics/positionality bring an agency to bear upon whether we, as academics, follow the leads we may stumble upon. The report concludes with a provocative question – given that many non-academics appear to be doing some amazing and inspiring projects and activities, thoughtful, critical and (arguably) examples of organic public geographies, what then is academia’s role

    Physics of Eclipsing Binaries: Heartbeat Stars and Tidally Induced Pulsations

    Get PDF
    Heartbeat stars are a relatively new class of eccentric ellipsoidal variable first discovered by Kepler. An overview of the current field is given with details of some of the interesting objects identified in our current Kepler sample of 135 heartbeats stars. Three objects that have recently been or are undergoing detailed study are described along with suggestions for further avenues of research. We conclude by discussing why heartbeat stars are an interesting new tool to study tidally induced pulsations and orbital dynamics

    Spatially varying density dependence drives a shifting mosaic of survival in a recovering apex predator (Canis lupus)

    Get PDF
    Understanding landscape patterns in mortality risk is crucial for promoting recovery of threatened and endangered species. Humans affect mortality risk in large carnivores such as wolves (Canis lupus), but spatiotemporally varying density dependence can significantly influence the landscape of survival. This potentially occurs when density varies spatially and risk is unevenly distributed. We quantified spatiotemporal sources of variation in survival rates of gray wolves (C. lupus) during a 21-year period of population recovery in the Upper Peninsula of Michigan, USA. We focused on mapping risk across time using Cox Proportional Hazards (CPH) models with time-dependent covariates, thus exploring a shifting mosaic of survival. Extended CPH models and time-dependent covariates revealed influences of seasonality, density dependence and experience, as well as individual-level factors and landscape predictors of risk. We used results to predict the shifting landscape of risk at the beginning, middle, and end of the wolf recovery time series. Survival rates varied spatially and declined over time. Long-term change was density-dependent, with landscape predictors such as agricultural land cover and edge densities contributing negatively to survival. Survival also varied seasonally and depended on individual experience, sex, and resident versus transient status. The shifting landscape of survival suggested that increasing density contributed to greater potential for human conflict and wolf mortality risk. Long-term spatial variation in key population vital rates is largely unquantified in many threatened, endangered, and recovering species. Variation in risk may indicate potential for source-sink population dynamics, especially where individuals preemptively occupy suitable territories, which forces new individuals into riskier habitat types as density increases. We encourage managers to explore relationships between adult survival and localized changes in population density. Density-dependent risk maps can identify increasing conflict areas or potential habitat sinks which may persist due to high recruitment in adjacent habitats

    Direct Detection of a (Proto)Binary-Disk System in IRAS 20126+4104

    Full text link
    We report the direct detection of a binary/disk system towards the high-mass (proto)stellar object IRAS20126+4104 at infrared wavengths. The presence of a multiple system had been indicated by the precession of the outflow and the double jet system detected earlier at cm-wavelengths. Our new K, L' & M' band infrared images obtained with the UKIRT under exceptional seeing conditions on Mauna Kea are able to resolve the central source for the first time, and we identify two objects separated by ~ 0.5'' (850 AU). The K and L' images also uncover features characteristic of a nearly edge-on disk, similar to many low mass protostars with disks: two emission regions oriented along an outflow axis and separated by a dark lane. The peaks of the L' & M' band and mm-wavelength emission are on the dark lane, presumably locating the primary young star. The thickness of the disk is measured to be ~ 850 AU for radii < 1000 AU. Approximate limits on the NIR magnitudes of the two young stars indicate a high-mass system, although with much uncertainty. These results are a demonstration of the high-mass nature of the system, and the similarities of the star-formation process in the low-mass and high-mass regimes viz. the presence of a disk-accretion stage. The companion is located along the dark lane, consistent with it being in the equatorial/disk plane, indicating a disk-accretion setting for massive, multiple, star-formation.Comment: 12 pages, 3 figures (1 pseudo colour), 1 table; colour figure replaced with jpg file; to be published in ApJL; (back after temoprary withdrawal due to non-scientific reasons.

    Gamow-Teller strength distributions for nuclei in pre-supernova stellar cores

    Get PDF
    Electron-capture and ÎČ\beta-decay of nuclei in the core of massive stars play an important role in the stages leading to a type II supernova explosion. Nuclei in the f-p shell are particularly important for these reactions in the post Silicon-burning stage of a presupernova star. In this paper, we characterise the energy distribution of the Gamow-Teller Giant Resonance (GTGR) for mid-fp-shell nuclei in terms of a few shape parameters, using data obtained from high energy, forward scattering (p,n) and (n,p) reactions. The energy of the GTGR centroid EGTE_{GT} is further generalised as function of nuclear properties like mass number, isospin and other shell model properties of the nucleus. Since a large fraction of the GT strength lies in the GTGR region, and the GTGR is accessible for weak transitions taking place at energies relevant to the cores of presupernova and collapsing stars, our results are relevant to the study of important e−e^--capture and ÎČ\beta-decay rates of arbitrary, neutron-rich, f-p shell nuclei in stellar cores. Using the observed GTGR and Isobaric Analog States (IAS) energy systematics we compare the coupling coefficients in the Bohr-Mottelson two particle interaction Hamiltonian for different regions of the Isotope Table.Comment: Revtex, 28 pages +7 figures (PostScript Figures, uuencoded, filename: Sutfigs.uu). If you have difficulty printing the figures, please contact [email protected]. Accepted for publication in Phys. Rev. C, Nov 01, 199

    Simulation of primordial object formation

    Full text link
    We have included the chemical rate network responsible for the formation of molecular Hydrogen in the N-body hydrodynamic code, Hydra, in order to study the formation of the first cosmological at redshifts between 10 and 50. We have tested our implementation of the chemical and cooling processes by comparing N-body top hat simulations with theoretical predictions from a semi-analytic model and found them to be in good agreement. We find that post-virialization properties are insensitive to the initial abundance of molecular hydrogen. Our main objective was to determine the minimum mass (MSG(z)M_{SG}(z)) of perturbations that could become self gravitating (a prerequisite for star formation), and the redshift at which this occurred. We have developed a robust indicator for detecting the presence of a self-gravitating cloud in our simulations and find that we can do so with a baryonic particle mass-resolution of 40 solar masses. We have performed cosmological simulations of primordial objects and find that the object's mass and redshift at which they become self gravitating agree well with the MSG(z)M_{SG}(z) results from the top hat simulations. Once a critical molecular hydrogen fractional abundance of about 0.0005 has formed in an object, the cooling time drops below the dynamical time at the centre of the cloud and the gas free falls in the dark matter potential wells, becoming self gravitating a dynamical time later.Comment: 45 pages, 17 figures, submitted to Ap

    Introduction: looking beyond the walls

    Get PDF
    In its consideration of the remarkable extent and variety of non-university researchers, this book takes a broader view of ‘knowledge’ and ‘research’ than in the many hot debates about today’s knowledge society, ‘learning age’, or organisation of research. It goes beyond the commonly held image of ‘knowledge’ as something produced and owned by the full-time experts to take a look at those engaged in active knowledge building outside the university walls
    • 

    corecore