148 research outputs found

    New roles for Fc receptors in neurodegeneration-the impact on immunotherapy for Alzheimer's disease

    Get PDF
    There are an estimated 18 million Alzheimer's disease (AD) sufferers worldwide and with no disease modifying treatment currently available, development of new therapies represents an enormous unmet clinical need. AD is characterized by episodic memory loss followed by severe cognitive decline and is associated with many neuropathological changes. AD is characterized by deposits of amyloid beta (A?), neurofibrillary tangles, and neuroinflammation. Active immunization or passive immunization against A? leads to the clearance of deposits in transgenic mice expressing human A?. This clearance is associated with reversal of associated cognitive deficits, but these results have not translated to humans, with both active and passive immunotherapy failing to improve memory loss. One explanation for these observations is that certain anti-A? antibodies mediate damage to the cerebral vasculature limiting the top dose and potentially reducing efficacy. Fc gamma receptors (Fc?R) are a family of immunoglobulin-like receptors which bind to the Fc portion of IgG, and mediate the response of effector cells to immune complexes. Data from both mouse and human studies suggest that cross-linking Fc?R by therapeutic antibodies and the subsequent pro-inflammatory response mediates the vascular side effects seen following immunotherapy. Increasing evidence is emerging that Fc?R expression on CNS resident cells, including microglia and neurons, is increased during aging and functionally involved in the pathogenesis of age-related neurodegenerative diseases. Therefore, we propose that increased expression and ligation of Fc?R in the CNS, either by endogenous IgG or therapeutic antibodies, has the potential to induce vascular damage and exacerbate neurodegeneration. To produce safe and effective immunotherapies for AD and other neurodegenerative diseases it will be vital to understand the role of Fc?R in the healthy and diseased brain. Here we review the literature on Fc?R expression, function and proposed roles in multiple age-related neurological diseases. Lessons can be learnt from therapeutic antibodies used for the treatment of cancer where antibodies have been engineered for optimal efficacy

    Mandibulofacial Dysostosis Attributed to a Recessive Mutation of CYP26C1 in Hereford Cattle

    Get PDF
    In spring 2020, six Hereford calves presented with congenital facial deformities attributed to a condition we termed mandibulofacial dysostosis (MD). Affected calves shared hallmark features of a variably shortened and/or asymmetric lower mandible and bilateral skin tags present 2–10 cm caudal to the commissure of the lips. Pedigree analysis revealed a single common ancestor shared by the sire and dam of each affected calf. Whole-genome sequencing (WGS) of 20 animals led to the discovery of a variant (Chr26 g. 14404993T\u3eC) in Exon 3 of CYP26C1 associated with MD. This missense mutation (p.L188P), is located in an α helix of the protein, which the identified amino acid substitution is predicted to break. The implication of this mutation was further validated through genotyping 2 additional affected calves, 760 other Herefords, and by evaluation of available WGS data from over 2500 other individuals. Only the a_ected individuals were homozygous for the variant and all heterozygotes had at least one pedigree tie to the suspect founder. CYP26C1 plays a vital role in tissue-specific regulation of retinoic acid (RA) during embryonic development. Dysregulation of RA can result in teratogenesis by altering the endothelin-1 signaling pathway affecting the expression of Dlx genes, critical to mandibulofacial development. We postulate that this recessive missense mutation in CYP26C1 impacts the catalytic activity of the encoded enzyme, leading to excess RA resulting in the observed MD phenotype

    Sequence Variation and Expression of the Gimap Gene Family in the BB Rat

    Get PDF
    Positional cloning of lymphopenia (lyp) in the BB rat revealed a frameshift mutation in Gimap5, a member of at least seven related GTPase Immune Associated Protein genes located on rat chromosome 4q24. Our aim was to clone and sequence the cDNA of the BB diabetes prone (DP) and diabetes resistant (DR) alleles of all seven Gimap genes in the congenic DR.lyp rat line with 2 Mb of BB DP DNA introgressed onto the DR genetic background. All (100%) DR.lyp/lyp rats are lymphopenic and develop type 1 diabetes (T1D) by 84 days of age while DR.+/+ rats remain T1D and lyp resistant. Among the seven Gimap genes, the Gimap5 frameshift mutation, a mutant allele that produces no protein, had the greatest impact on lymphopenia in the DR.lyp/lyp rat. Gimap4 and Gimap1 each had one amino acid substitution of unlikely significance for lymphopenia. Quantitative RT-PCR analysis showed a reduction in expression of all seven Gimap genes in DR.lyp/lyp spleen and mesenteric lymph nodes when compared to DR.+/+. Only four; Gimap1, Gimap4, Gimap5, and Gimap9 were reduced in thymus. Our data substantiates the Gimap5 frameshift mutation as the primary defect with only limited contributions to lymphopenia from the remaining Gimap genes

    Heat stress and β-adrenergic agonists alter the adipose transcriptome and fatty acid mobilization in ruminant livestock

    Get PDF
    Growth and feed efficiency of cattle are improved by supplementation with the beta-adrenergic agonists (βAA), ractopamine hydrochloride (RH; β1AA) or zilpaterol hydrochloride (ZH; β2AA) (Elam et al., 2009). βAA supplementation alters adipose deposition by inhibiting fatty acid biosynthesis and promoting lipolysis of stored triacylglycerols into free fatty acids (FFAs) (Johnson et al., 2014). However, β2 adrenoceptors (βAR) desensitize with chronic activation (Re et al., 1997); supplementation is thus limited to the last 20 to 40 d of feeding. The annual economic impact of heat stress (HS) has been estimated to exceed $2.4 billion (St-Pierre et al., 2003). Heat-stressed livestock have reduced growth rates, dry matter intake, and average daily gain (Mitlöhner et al., 2001; St-Pierre et al., 2003). In response to acute stress, signaling pathways for lipolysis of circulating and stored triglycerides are activated, while chronic stress increases lipogenesis and adipogenesis (Campbell et al., 2009; Peckett et al., 2011). In cattle, HS also increases the responsiveness of adipocytes to lipolytic signals, increasing lipolysis (Faylon et al., 2015). The objective of this study was to understand how HS and βAA independently and interactively affect adipose tissue. Prior work identified minimal impact of RH on metabolic properties (Barnes et al., 2019) and on the transcriptome of skeletal muscle (Kubik et al., 2018). We therefore hypothesized that RH may be primarily affecting adipose; specifically, that lipolytic activity is increased due to heat and βAA in an additive fashion. We tested this hypothesis in RH-supplemented lambs and ZH-supplemented cattle exposed to HS for 30 and 21 d, respectively

    ‘The Invisible Chain by Which All Are Bound to Each Other’: Civil Defence Magazines and the Development of Community During the Second World War

    No full text
    This article uses local collaboratively produced civil defence magazines to examine how community spirit was developed and represented within the civil defence services during the Second World War. It highlights the range of functions which the magazines performed, as well as the strategies employed by civil defence communities to manage their emotions in order to keep morale high and distract personnel from the fear and boredom experienced while on duty. The article also discusses silences in the magazines — especially around the experience of air raids — and argues that this too reflects group emotional management strategies. The significance of local social groups in developing narratives about civil defence and their workplace communities is demonstrated, and the article shows how personnel were able to engage with and refashion dominant cultural narratives of the ‘people’s war’ in order to assert their own status within the war effort

    Nanopore sequencing of clonal IGH rearrangements in cell-free DNA as a biomarker for acute lymphoblastic leukemia

    Get PDF
    BackgroundAcute Lymphoblastic Leukemia (ALL) is the most common pediatric cancer, and patients with relapsed ALL have a poor prognosis. Detection of ALL blasts remaining at the end of treatment, or minimal residual disease (MRD), and spread of ALL into the central nervous system (CNS) have prognostic importance in ALL. Current methods to detect MRD and CNS disease in ALL rely on the presence of ALL blasts in patient samples. Cell-free DNA, or small fragments of DNA released by cancer cells into patient biofluids, has emerged as a robust and sensitive biomarker to assess cancer burden, although cfDNA analysis has not previously been applied to ALL.MethodsWe present a simple and rapid workflow based on NanoporeMinION sequencing of PCR amplified B cell-specific rearrangement of the (IGH) locus in cfDNA from B-ALL patient samples. A cohort of 5 pediatric B-ALL patient samples was chosen for the study based on the MRD and CNS disease status.ResultsQuantitation of IGH-variable sequences in cfDNA allowed us to detect clonal heterogeneity and track the response of individual B-ALL clones throughout treatment. cfDNA was detected in patient biofluids with clinical diagnoses of MRD and CNS disease, and leukemic clones could be detected even when diagnostic cell-count thresholds for MRD were not met. These data suggest that cfDNA assays may be useful in detecting the presence of ALL in the patient, even when blasts are not physically present in the biofluid sample.ConclusionsThe Nanopore IGH detection workflow to monitor cell-free DNA is a simple, rapid, and inexpensive assay that may ultimately serve as a valuable complement to traditional clinical diagnostic approaches for ALL

    Large-scale multitrait genome-wide association analyses identify hundreds of glaucoma risk loci

    Get PDF
    Glaucoma, a leading cause of irreversible blindness, is a highly heritable human disease. Previous genome-wide association studies have identified over 100 loci for the most common form, primary open-angle glaucoma. Two key glaucoma-associated traits also show high heritability: intraocular pressure and optic nerve head excavation damage quantified as the vertical cup-to-disc ratio. Here, since much of glaucoma heritability remains unexplained, we conducted a large-scale multitrait genome-wide association study in participants of European ancestry combining primary open-angle glaucoma and its two associated traits (total sample size over 600,000) to substantially improve genetic discovery power (263 loci). We further increased our power by then employing a multiancestry approach, which increased the number of independent risk loci to 312, with the vast majority replicating in a large independent cohort from 23andMe, Inc. (total sample size over 2.8 million; 296 loci replicated at P < 0.05, 240 after Bonferroni correction). Leveraging multiomics datasets, we identified many potential druggable genes, including neuro-protection targets likely to act via the optic nerve, a key advance for glaucoma because all existing drugs only target intraocular pressure. We further used Mendelian randomization and genetic correlation-based approaches to identify novel links to other complex traits, including immune-related diseases such as multiple sclerosis and systemic lupus erythematosus

    Choice of Bacterial Growth Medium Alters the Transcriptome and Phenotype of Salmonella enterica Serovar Typhimurium

    Get PDF
    The type of bacterial culture medium is an important consideration during design of any experimental protocol. The aim of this study was to understand the impact of medium choice on bacterial gene expression and physiology by comparing the transcriptome of Salmonella enterica SL1344 after growth in the widely used LB broth or the rationally designed MOPS minimal medium. Transcriptomics showed that after growth in MOPS minimal media, compared to LB, there was increased expression of 42 genes involved in amino acid synthesis and 23 genes coding for ABC transporters. Seven flagellar genes had decreased expression after growth in MOPS minimal medium and this correlated with a decreased motility. In both MOPS minimal medium and MEM expression of genes from SPI-2 was increased and the adhesion of S. Typhimurium to intestinal epithelial cells was higher compared to the levels after growth in LB. However, SL1344 invasion was not significantly altered by growth in either MOPs minimal media or MEM. Expression of SPI-2 was also measured using chromosomal GFP reporter fusions followed by flow cytometry which showed, for the first time, that the reduction in SPI-2 transcript after growth in different media related to a reduction in the proportion of the bacterial population expressing SPI-2. These data highlight the profound differences in the global transcriptome after in vitro growth in different media and show that choice of medium should be considered carefully during experimental design, particularly when virulence related phenotypes are being measured
    corecore