423 research outputs found

    Cytotoxicity of NiO and Ni(OH)ā‚‚ Nanoparticles is Mediated by Oxidative Stress-Induced Cell Death and Suppression of Cell Proliferation

    Get PDF
    The use of nanomaterial-based products continues to grow with advancing technology. Understanding the potential toxicity of nanoparticles (NPs) is important to ensure that products containing them do not impose harmful effects to human or environmental health. In this study, we evaluated the comparative cytotoxicity between nickel oxide (NiO) and nickel hydroxide (Ni(OH)2) in human bronchoalveolar carcinoma (A549) and human hepatocellular carcinoma (HepG2) cell lines. Cellular viability studies revealed cell line-specific cytotoxicity in which nickel NPs were toxic to A549 cells but relatively nontoxic to HepG2 cells. Time-, concentration-, and particle-specific cytotoxicity was observed in A549 cells. NP-induced oxidative stress triggered dissipation of mitochondrial membrane potential and induction of caspase-3 enzyme activity. The subsequent apoptotic events led to reduction in cell number. In addition to cell death, suppression of cell proliferation played an essential role in regulating cell number. Collectively, the observed cell viability is a function of cell death and suppression of proliferation. Physical and chemical properties of NPs such as total surface area and metal dissolution are in agreement with the observed differential cytotoxicity. Understanding the properties of NPs is essential in informing the design of safer materials

    Sensitive dependence of the motion of a legged robot on granular media

    Get PDF
    Legged locomotion on flowing ground ({\em e.g.} granular media) is unlike locomotion on hard ground because feet experience both solid- and fluid-like forces during surface penetration. Recent bio-inspired legged robots display speed relative to body size on hard ground comparable to high performing organisms like cockroaches but suffer significant performance loss on flowing materials like sand. In laboratory experiments we study the performance (speed) of a small (2.3 kg) six-legged robot, SandBot, as it runs on a bed of granular media (1 mm poppy seeds). For an alternating tripod gait on the granular bed, standard gait control parameters achieve speeds at best two orders of magnitude smaller than the 2 body lengths/s (ā‰ˆ60\approx 60 cm/s) for motion on hard ground. However, empirical adjustment of these control parameters away from the hard ground settings, restores good performance, yielding top speeds of 30 cm/s. Robot speed depends sensitively on the packing fraction Ļ•\phi and the limb frequency Ļ‰\omega, and a dramatic transition from rotary walking to slow swimming occurs when Ļ•\phi becomes small enough and/or Ļ‰\omega large enough. We propose a kinematic model of the rotary walking mode based on generic features of penetration and slip of a curved limb in granular media. The model captures the dependence of robot speed on limb frequency and the transition between walking and swimming modes but highlights the need for a deeper understanding of the physics of granular media.Comment: 4 figure

    Lift-off dynamics in a simple jumping robot

    Get PDF
    We study vertical jumping in a simple robot comprising an actuated mass-spring arrangement. The actuator frequency and phase are systematically varied to find optimal performance. Optimal jumps occur above and below (but not at) the robot's resonant frequency f0f_0. Two distinct jumping modes emerge: a simple jump which is optimal above f0f_0 is achievable with a squat maneuver, and a peculiar stutter jump which is optimal below f0f_0 is generated with a counter-movement. A simple dynamical model reveals how optimal lift-off results from non-resonant transient dynamics.Comment: 4 pages, 4 figures, Physical Review Letters, in press (2012

    Circular Dichroism in Atomic Resonance-Enhanced Few-Photon Ionization

    Get PDF
    We investigate few-photon ionization of lithium atoms prepared in the polarized 2p(mā„“ = +1) state when subjected to femtosecond light pulses with left- or right-handed circular polarization at wavelengths between 665 and 920 nm. We consider whether ionization proceeds more favorably for the electric field co- or counter-rotating with the initial electronic current density. Strong asymmetries are found and quantitatively analyzed in terms of circular dichroism (CD). While the intensity dependence of the measured CD values is rather weak throughout the investigated regime, a very strong sensitivity on the center wavelength of the incoming radiation is observed. While the co-rotating situation overall prevails, the counter-rotating geometry is strongly favored around 800 nm due to the 2p-3s resonant transition, which can only be driven by counter-rotating fields. The observed features provide insights into the helicity dependence of light-atom interactions, and on the possible control of electron emission in atomic few-photon ionization by polarization-selective resonance enhancement

    Pore Elimination Mechanisms during 3D Printing of Metals

    Get PDF
    Laser powder bed fusion (LPBF) is a 3D printing technology that can print metal parts with complex geometries without the design constraints of traditional manufacturing routes. However, the parts printed by LPBF normally contain many more pores than those made by conventional methods, which severely deteriorates their properties. Here, by combining in-situ high-speed high-resolution synchrotron x-ray imaging experiments and multi-physics modeling, we unveil the dynamics and mechanisms of pore motion and elimination in the LPBF process. We find that the high thermocapillary force, induced by the high temperature gradient in the laser interaction region, can rapidly eliminate pores from the melt pool during the LPBF process. The thermocapillary force driven pore elimination mechanism revealed here may guide the development of 3D printing approaches to achieve pore-free 3D printing of metals

    Doping Evolution of the Superconducting Gap Structure in the Underdoped Iron Arsenide Baā‚ā‚‹ā‚“Kā‚“Feā‚‚Asā‚‚ Revealed by Thermal Conductivity

    Get PDF
    The thermal conductivity Īŗ of the iron-arsenide superconductor Ba1-xKxFe2As2 was measured for heat currents parallel and perpendicular to the tetragonal c axis at temperatures down to 50 mK and in magnetic fields up to 15 T. Measurements were performed on samples with compositions ranging from optimal doping (x = 0.34, Tc = 39 K) down to dopings deep into the region where antiferromagnetic order coexists with superconductivity (x = 0.16, Tc = 7 K). In zero field, there is no residual linear term in Īŗ(T) as Tā†’0 at any doping, whether for in-plane or interplane transport. This shows that there are no nodes in the superconducting gap. However, as x decreases into the range of coexistence with antiferromagnetism, the residual linear term grows more and more rapidly with applied magnetic field. This shows that the superconducting energy gap develops minima at certain locations on the Fermi surface and these minima deepen with decreasing x. We propose that the minima in the gap structure arise when the Fermi surface of Ba1-xKxFe2As2 is reconstructed by the antiferromagnetic order

    Reduction of the Ordered Magnetic Moment and its Relationship to Kondo Coherence in Ceā‚ā‚‹ā‚“Laā‚“Cuā‚‚Geā‚‚

    Get PDF
    The microscopic details of the suppression of antiferromagnetic order in the Kondo-lattice series Ce1-xLaxCu2Ge2 due to nonmagnetic dilution by La are revealed through neutron diffraction results for x = 0.20, 0.40, 0.75, and 0.85. Magnetic Bragg peaks are found for 0.20 ā‰¤ x ā‰¤ 0.75, and both the NĆ©el temperature TN and the ordered magnetic moment per Ce Ī¼ linearly decrease with increasing x. The reduction in Ī¼ points to strong hybridization of the increasingly diluted Ce 4f electrons, and we find a remarkable quadratic dependence of Ī¼ on the Kondo-coherence temperature. We discuss our results in terms of local-moment- versus itinerant-type magnetism and mean-field theory and show that Ce1-xLaxCu2Ge2 provides an exceptional opportunity to quantitatively study the multiple magnetic interactions in a Kondo lattice
    • ā€¦
    corecore