1,064 research outputs found
Covering Pairs in Directed Acyclic Graphs
The Minimum Path Cover problem on directed acyclic graphs (DAGs) is a
classical problem that provides a clear and simple mathematical formulation for
several applications in different areas and that has an efficient algorithmic
solution. In this paper, we study the computational complexity of two
constrained variants of Minimum Path Cover motivated by the recent introduction
of next-generation sequencing technologies in bioinformatics. The first problem
(MinPCRP), given a DAG and a set of pairs of vertices, asks for a minimum
cardinality set of paths "covering" all the vertices such that both vertices of
each pair belong to the same path. For this problem, we show that, while it is
NP-hard to compute if there exists a solution consisting of at most three
paths, it is possible to decide in polynomial time whether a solution
consisting of at most two paths exists. The second problem (MaxRPSP), given a
DAG and a set of pairs of vertices, asks for a path containing the maximum
number of the given pairs of vertices. We show its NP-hardness and also its
W[1]-hardness when parametrized by the number of covered pairs. On the positive
side, we give a fixed-parameter algorithm when the parameter is the maximum
overlapping degree, a natural parameter in the bioinformatics applications of
the problem
F100(3) parallel compressor computer code and user's manual
The Pratt & Whitney Aircraft multiple segment parallel compressor model has been modified to include the influence of variable compressor vane geometry on the sensitivity to circumferential flow distortion. Further, performance characteristics of the F100 (3) compression system have been incorporated into the model on a blade row basis. In this modified form, the distortion's circumferential location is referenced relative to the variable vane controlling sensors of the F100 (3) engine so that the proper solution can be obtained regardless of distortion orientation. This feature is particularly important for the analysis of inlet temperature distortion. Compatibility with fixed geometry compressor applications has been maintained in the model
Electronic Correlation and Transport Properties of Nuclear Fuel Materials
Actinide elements, such as uranium and plutonium, and their compounds are
best known as nuclear materials. When engineering optimal fuel materials for
nuclear power, important thermophysical properties to be considered are melting
point and thermal conductivity. Understanding the physics underlying transport
phenomena due to electrons and lattice vibrations in actinide systems is a
crucial step toward the design of better fuels. Using first principle LDA+DMFT
method, we conduct a systematic study on the correlated electronic structures
and transport properties of select actinide carbides, nitrides, and oxides,
many of which are nuclear fuel materials. We find that different mechanisms,
electrons--electron and electron--phonon interactions, are responsible for the
transport in the uranium nitride and carbide, the best two fuel materials due
to their excellent thermophysical properties. Our findings allow us to make
predictions on how to improve their thermal conductivities.Comment: Main article: 5 pages, 3 figures. Supplementary info: 2 pages, 1
figur
Nanosecond electro-optical switching with a repetition rate above 20MHz
We describe an electro-optical switch based on a commercial electro-optic
modulator (modified for high-speed operation) and a 340V pulser having a rise
time of 2.2ns (at 250V). It can produce arbitrary pulse patterns with an
average repetition rate beyond 20MHz. It uses a grounded-grid triode driven by
transmitting power transistors. We discuss variations that enable analog
operation, use the step-recovery effect in bipolar transistors, or offer other
combinations of output voltage, size, and cost.Comment: 3 pages, 3 figures. Minor change
ClassCut for Unsupervised Class Segmentation
Abstract. We propose a novel method for unsupervised class segmentation on a set of images. It alternates between segmenting object instances and learning a class model. The method is based on a segmentation energy defined over all images at the same time, which can be optimized efficiently by techniques used before in interactive segmentation. Over iterations, our method progressively learns a class model by integrating observations over all images. In addition to appearance, this model captures the location and shape of the class with respect to an automatically determined coordinate frame common across images. This frame allows us to build stronger shape and location models, similar to those used in object class detection. Our method is inspired by interactive segmentation methods [1], but it is fully automatic and learns models characteristic for the object class rather than specific to one particular object/image. We experimentally demonstrate on the Caltech4, Caltech101, and Weizmann horses datasets that our method (a) transfers class knowledge across images and this improves results compared to segmenting every image independently; (b) outperforms Grabcut [1] for the task of unsupervised segmentation; (c) offers competitive performance compared to the state-of-the-art in unsupervised segmentation and in particular it outperforms the topic model [2].
On the relationship between standard intersection cuts, lift-and-project cuts, and generalized intersection cuts
We examine the connections between the classes of cuts in the title. We show that lift-and-project (L&P) cuts from a given disjunction are equivalent to generalized intersection cuts from the family of polyhedra obtained by taking positive combinations of the complements of the inequalities of each term of the disjunction. While L&P cuts from split disjunctions are known to be equivalent to standard intersection cuts (SICs) from the strip obtained by complementing the terms of the split, we show that L&P cuts from more general disjunctions may not be equivalent to any SIC. In particular, we give easily verifiable necessary and sufficient conditions for a L&P cut from a given disjunction D to be equivalent to a SIC from the polyhedral counterpart of D. Irregular L&P cuts, i.e. those that violate these conditions, have interesting properties. For instance, unlike the regular ones, they may cut off part of the corner polyhedron associated with the LP solution from which they are derived. Furthermore, they are not exceptional: their frequency exceeds that of regular cuts. A numerical example illustrates some of the above properties. © 2016 Springer-Verlag Berlin Heidelberg and Mathematical Optimization Societ
On strongly chordal graphs that are not leaf powers
A common task in phylogenetics is to find an evolutionary tree representing
proximity relationships between species. This motivates the notion of leaf
powers: a graph G = (V, E) is a leaf power if there exist a tree T on leafset V
and a threshold k such that uv is an edge if and only if the distance between u
and v in T is at most k. Characterizing leaf powers is a challenging open
problem, along with determining the complexity of their recognition. This is in
part due to the fact that few graphs are known to not be leaf powers, as such
graphs are difficult to construct. Recently, Nevries and Rosenke asked if leaf
powers could be characterized by strong chordality and a finite set of
forbidden subgraphs.
In this paper, we provide a negative answer to this question, by exhibiting
an infinite family \G of (minimal) strongly chordal graphs that are not leaf
powers. During the process, we establish a connection between leaf powers,
alternating cycles and quartet compatibility. We also show that deciding if a
chordal graph is \G-free is NP-complete, which may provide insight on the
complexity of the leaf power recognition problem
Telepresence and the Role of the Senses
The telepresence experience can be evoked in a number of ways. A well-known example is a player of videogames who reports about a telepresence experience, a subjective experience of being in one place or environment, even when physically situated in another place. In this paper we set the phenomenon of telepresence into a theoretical framework. As people react subjectively to stimuli from telepresence, empirical studies can give more evidence about the phenomenon. Thus, our contribution is to bridge the theoretical with the empirical. We discuss theories of perception with an emphasis on Heidegger, Merleau-Ponty and Gibson, the role of the senses and the Spinozian belief procedure. The aim is to contribute to our understanding of this phenomenon. A telepresence-study that included the affordance concept is used to empirically study how players report sense-reactions to virtual sightseeing in two cities. We investigate and explore the interplay of the philosophical and the empirical. The findings indicate that it is not only the visual sense that plays a role in this experience, but all senses
Eosinophils Are Important for Protection, Immunoregulation and Pathology during Infection with Nematode Microfilariae
Eosinophil responses typify both allergic and parasitic helminth disease. In helminthic disease, the role of eosinophils can be both protective in immune responses and destructive in pathological responses. To investigate whether eosinophils are involved in both protection and pathology during filarial nematode infection, we explored the role of eosinophils and their granule proteins, eosinophil peroxidase (EPO) and major basic protein-1 (MBP-1), during infection with Brugia malayi microfilariae. Using eosinophil-deficient mice (PHIL), we further clarify the role of eosinophils in clearance of microfilariae during primary, but not challenge infection in vivo. Deletion of EPO or MBP-1 alone was insufficient to abrogate parasite clearance suggesting that either these molecules are redundant or eosinophils act indirectly in parasite clearance via augmentation of other protective responses. Absence of eosinophils increased mast cell recruitment, but not other cell types, into the broncho-alveolar lavage fluid during challenge infection. In addition absence of eosinophils or EPO alone, augmented parasite-induced IgE responses, as measured by ELISA, demonstrating that eosinophils are involved in regulation of IgE. Whole body plethysmography indicated that nematode-induced changes in airway physiology were reduced in challenge infection in the absence of eosinophils and also during primary infection in the absence of EPO alone. However lack of eosinophils or MBP-1 actually increased goblet cell mucus production. We did not find any major differences in cytokine responses in the absence of eosinophils, EPO or MBP-1. These results reveal that eosinophils actively participate in regulation of IgE and goblet cell mucus production via granule secretion during nematode-induced pathology and highlight their importance both as effector cells, as damage-inducing cells and as supervisory cells that shape both innate and adaptive immunity
Benefits and barriers among volunteer teaching faculty: comparison between those who precept and those who do not in the core pediatrics clerkship
Background: Community-based outpatient experiences are a core component of the clinical years in medical school. Central to the success of this experience is the recruitment and retention of volunteer faculty from the community. Prior studies have identified reasons why some preceptors volunteer their time however, there is a paucity of data comparing those who volunteer from those who do not. Methods: A survey was developed following a review of previous studies addressing perceptions of community-based preceptors. A non-parametric, Mann–Whitney U test was used to compare active preceptors (APs) and inactive preceptors (IPs) and all data were analyzed in SPSS 20.0. Results: There was a 28% response rate. Preceptors showed similar demographic characteristics, valued intrinsic over extrinsic benefits, and appreciated Continuing Medical Education (CME)/Maintenance of Certification (MOC) opportunities as the highest extrinsic reward. APs were more likely to also precept at the M1/M2 level and value recognition and faculty development opportunities (p<0.05). IPs denoted time as the most significant barrier and, in comparison to APs, rated financial compensation as more important (p<0.05). Conclusions: Community preceptors are motivated by intrinsic benefits of teaching. Efforts to recruit should initially focus on promoting awareness of teaching opportunities and offering CME/MOC opportunities. Increasing the pool of preceptors may require financial compensation
- …
