22 research outputs found

    Light Ion Accelerating Line (L3IA): Test Experiment at ILIL-PW

    Full text link
    The construction of a novel Laser driven Light Ions Acceleration Line(L3IA) is progressing rapidly towards the operation, following the recent upgrade of the ILIL-PW laser facility. The Line was designed following the pilot experimental activity carried out earlier at the same facility to define design parameters and to identify main components including target control and diagnostic equipment, also in combination with the numerical simulations for the optimization of laser and target parameters. A preliminary set of data was acquired following the successful commissioning of the laser system >100 TW upgrade. Data include output from a range of different ion detectors and optical diagnostics installed for qualification of the laser-target interaction. An overview of the results is given along with a description of the relevant upgraded laser facility and features.Comment: 6 pages, 7 figures, 18 references, presented at the EAAC 201

    Test of candidate light distributors for the muon (g−-2) laser calibration system

    Full text link
    The new muon (g-2) experiment E989 at Fermilab will be equipped with a laser calibration system for all the 1296 channels of the calorimeters. An integrating sphere and an alternative system based on an engineered diffuser have been considered as possible light distributors for the experiment. We present here a detailed comparison of the two based on temporal response, spatial uniformity, transmittance and time stability.Comment: accepted to Nucl.Instrum.Meth.

    In Vivo NMR Metabolic Profiling of Fabrea salina Reveals Sequential Defense Mechanisms against Ultraviolet Radiation

    No full text
    Fabrea salina is a hypersaline ciliate that is known to be among the strongest ultraviolet (UV)-resistant microorganisms; however, the molecular mechanisms of this resistance are almost unknown. By means of in vivo NMR spectroscopy, we determined the metabolic profile of living F. salina cells exposed to visible light and to polychromatic UV-B + UV-A Vis radiation for several different exposure times. We used unsupervised pattern-recognition analysis to compare these profiles and discovered some metabolites whose concentration changed specifically upon UV exposure and in a dose-dependent manner. This variation was interpreted in terms of a two-phase cell reaction involving at least two different pathways: an early response consisting of degradation processes, followed by a late response activating osmoprotection mechanisms. The first step alters the concentration of formate, acetate, and saturated fatty-acid metabolites, whereas the osmoprotection modifies the activity of betaine moieties and other functionally related metabolites. In the latter pathway, alanine, proline, and sugars suggest a possible incipient protein synthesis as defense and/or degeneration mechanisms. We conclude that NMR spectroscopy on in vivo cells is an optimal approach for investigating the effect of UV-induced stress on the whole metabolome of F. salina because it minimizes the invasiveness of the measurement

    Understanding UV-driven metabolism in the hypersaline ciliate Fabrea salina

    No full text
    By using NMR spectroscopy, a non-invasive investigation technique, we performed in vivo experiments aimed at uncovering the metabolic pathways involved in the early response of Fabrea salina cells to ultraviolet (UV) radiation. This hypersaline ciliate was chosen as a model organism because of its well-known high resistance to UV radiation. Identical cell samples were exposed to visible radiation only (control samples, CS) and to UV-B + UV-A + visible radiation (treated samples, TS), and NMR spectra of in vivo cells were collected at different exposure times. Resonances were identified through one- and two-dimensional experiments. To compare experiments performed at variable irradiation times on different culture batches, metabolite signals affected by the UV exposure were normalized to corresponding intensity at tau = 0, the zero exposure time. The most affected metabolites are all osmoprotectants, namely, choline, glycine-betaine, betaines, ectoine, proline, alpha-trehalose and sucrose. The time course of these signals presents qualitative differences between CS and TS, and most of these osmoprotectants tend to accumulate significantly in TS in a UV dose-dependent manner. A picture of the immediate stress response of F. salina against UV radiation in terms of osmoprotection, water retention and salting-out prevention is described

    Enhanced laser-driven proton acceleration via improved fast electron heating in a controlled pre-plasma

    Get PDF
    The interaction of ultraintense laser pulses with solids is largely affected by the plasma gradient at the vacuum–solid interface, which modifies the absorption and ultimately, controls the energy distribution function of heated electrons. A micrometer scale-length plasma has been predicted to yield a significant enhancement of the energy and weight of the fast electron population and to play a major role in laser-driven proton acceleration with thin foils. We report on recent experimental results on proton acceleration from laser interaction with foil targets at ultra-relativistic intensities. We show a threefold increase of the proton cut-off energy when a micrometer scale-length pre-plasma is introduced by irradiation with a low energy femtosecond pre-pulse. Our realistic numerical simulations agree with the observed gain of the proton cut-off energy and confirm the role of stochastic heating of fast electrons in the enhancement of the accelerating sheath field

    Enhanced laser-driven proton acceleration via improved fast electron heating in a controlled pre-plasma

    No full text
    The interaction of ultraintense laser pulses with solids is largely affected by the plasma gradient at the vacuum–solid interface, which modifies the absorption and ultimately, controls the energy distribution function of heated electrons. A micrometer scale-length plasma has been predicted to yield a significant enhancement of the energy and weight of the fast electron population and to play a major role in laser-driven proton acceleration with thin foils. We report on recent experimental results on proton acceleration from laser interaction with foil targets at ultra-relativistic intensities. We show a threefold increase of the proton cut-off energy when a micrometer scale-length pre-plasma is introduced by irradiation with a low energy femtosecond pre-pulse. Our realistic numerical simulations agree with the observed gain of the proton cut-off energy and confirm the role of stochastic heating of fast electrons in the enhancement of the accelerating sheath field

    Laser-driven proton acceleration via excitation of surface plasmon polaritons into TiO2nanotube array targets

    No full text
    In this paper we report the measurement of laser-driven proton acceleration obtained by irradiating nanotube array targets with ultrashort laser pulses at an intensity in excess of 1020 W cm-2. The energetic spectra of forward accelerated protons show a larger flux and a higher proton cutoff energy if compared to flat foils of comparable thickness. Particle-In-Cell 2D simulations reveal that packed nanotube targets favour a better laser-plasma coupling and produce an efficient generation of fast electrons moving through the target. Due to their sub-wavelength size, the propagation of e.m. field into the tubes is made possible by the excitation of Surface Plasmon Polaritons, travelling down to the end of the target and assuring a continuous electron acceleration. The higher amount and energy of these electrons result in turn in a stronger electric sheath field on the rear surface of the target and in a more efficient acceleration of the protons via the target normal sheath acceleration mechanism

    LESM: a laser-driven sub-MeV electron source delivering ultra-high dose rate on thin biological samples

    No full text
    We present a laser-driven source of electron bunches with average energy 260 keV and picosecond duration, which has been setup for radiobiological tests covering the previously untested sub-MeV energy range. Each bunch combines high charge with short duration and sub-millimeter range into a record instantaneous dose rate, as high as 10(9) Gy s(-1). The source can be operated at 10 Hz and its average dose rate is 35 mGy s(-1). Both the high instantaneous dose rate and high level of relative biological effectiveness, attached to sub-MeV electrons, make this source very attractive for studies of ultrafast radiobiology on thin cell samples. The source reliability, in terms of shot-to-shot stability of features such as mean energy, bunch charge and transverse beam profile, is discussed, along with a dosimetric characterization. Finally, a few preliminary biological tests performed with this source are presented
    corecore