3,056 research outputs found
Experimental demonstration of higher-order Laguerre-Gauss mode interferometry
The compatibility of higher-order Laguerre-Gauss (LG) modes with
interferometric technologies commonly used in gravitational wave detectors is
investigated. In this paper we present the first experimental results
concerning the performance of the LG33 mode in optical resonators. We show that
the Pound-Drever-Hall error signal for a LG33 mode in a linear optical
resonator is identical to that of the more commonly used LG00 mode, and
demonstrate the feedback control of the resonator with a LG33 mode. We
succeeded to increase the mode purity of a LG33 mode generated using a
spatial-light modulator from 51% to 99% upon transmission through a linear
optical resonator. We further report the experimental verification that a
triangular optical resonator does not transmit helical LG modes
Higher order Laguerre-Gauss mode degeneracy in realistic, high finesse cavities
Higher order Laguerre-Gauss (LG) beams have been proposed for use in future
gravitational wave detectors, such as upgrades to the Advanced LIGO detectors
and the Einstein Telescope, for their potential to reduce the effects of the
thermal noise of the test masses. This paper details the theoretical analysis
and simulation work carried out to investigate the behaviour of LG beams in
realistic optical setups, in particular the coupling between different LG modes
in a linear cavity. We present a new analytical approximation to compute the
coupling between modes, using Zernike polynomials to describe mirror surface
distortions. We apply this method in a study of the behaviour of the LG33 mode
within realistic arm cavities, using measured mirror surface maps from the
Advanced LIGO project. We show mode distortions that can be expected to arise
due to the degeneracy of higher order spatial modes within such cavities and
relate this to the theoretical analysis. Finally we identify the mirror
distortions which cause significant coupling from the LG33 mode into other
order 9 modes and derive requirements for the mirror surfaces.Comment: 12 pages Submitted to PRD 19/07/201
Experimental test of higher-order Laguerre–Gauss modes in the 10 m Glasgow prototype interferometer
Brownian noise of dielectric mirror coatings is expected to be one of the limiting noise sources, at the peak sensitivity, of next generation ground based interferometric gravitational wave (GW) detectors. The use of higher-order Laguerre–Gauss (LG) beams has been suggested to reduce the effect of coating thermal noise in future generations of gravitational wave detectors. In this paper we describe the first test of interferometry with higher-order LG beams in an environment similar to a full-scale gravitational wave detector. We compare the interferometric performance of higher-order LG modes and the fundamental mode beams, injected into a 10 m long suspended cavity that features a finesse of 612, a value chosen to be typical of future gravitational wave detectors. We found that the expected mode degeneracy of the injected LG3, 3 beam was resolved into a multiple peak structure, and that the cavity length control signal featured several nearby zero crossings. The break up of the mode degeneracy is due to an astigmatism (defined as |Rcy − Rcx|) of 5.25 ± 0.5 cm on one of our cavity mirrors with a radius of curvature (Rc) of 15 m. This observation agrees well with numerical simulations developed with the FINESSE software. We also report on how these higher-order mode beams respond to the misalignment and mode mismatch present in our 10 m cavity. In general we found the LG3, 3 beam to be considerably more susceptible to astigmatism and mode mismatch than a conventional fundamental mode beam. Therefore the potential application of higher-order Laguerre–Gauss beams in future gravitational wave detectors will impose much more stringent requirements on both mode matching and mirror astigmatism
Generation of high-purity higher-order Laguerre-Gauss beams at high laser power
We have investigated the generation of highly pure higher-order
Laguerre-Gauss (LG) beams at high laser power of order 100W, the same regime
that will be used by 2nd generation gravitational wave interferometers such as
Advanced LIGO. We report on the generation of a helical type LG33 mode with a
purity of order 97% at a power of 83W, the highest power ever reported in
literature for a higher-order LG mode.Comment: 5 pages, 6 figure
Review of the Laguerre-Gauss mode technology research program at Birmingham
Gravitational wave detectors from the advanced generation onwards are
expected to be limited in sensitivity by thermal noise of the optics, making
the reduction of this noise a key factor in the success of such detectors. A
proposed method for reducing the impact of this noise is to use higher-order
Laguerre-Gauss (LG) modes for the readout beam, as opposed to the currently
used fundamental mode. We present here a synopsis of the research program
undertaken by the University of Birmingham into the suitability of LG mode
technology for future gravitational wave detectors. This will cover our
previous and current work on this topic, from initial simulations and table-top
LG mode experiments up to implementation in a prototype scale suspended cavity
and high-power laser bench
Small optic suspensions for Advanced LIGO input optics and other precision optical experiments
We report on the design and performance of small optic suspensions developed
to suppress seismic motion of out-of-cavity optics in the Input Optics
subsystem of the Advanced LIGO interferometric gravitational wave detector.
These compact single stage suspensions provide isolation in all six degrees of
freedom of the optic, local sensing and actuation in three of them, and passive
damping for the other three
Betulin Is a Potent Anti-Tumor Agent that Is Enhanced by Cholesterol
Betulinic Acid (BetA) and its derivatives have been extensively studied in the past for their anti-tumor effects, but relatively little is known about its precursor Betulin (BE). We found that BE induces apoptosis utilizing a similar mechanism as BetA and is prevented by cyclosporin A (CsA). BE induces cell death more rapidly as compared to BetA, but to achieve similar amounts of cell death a considerably higher concentration of BE is needed. Interestingly, we observed that cholesterol sensitized cells to BE-induced apoptosis, while there was no effect of cholesterol when combined with BetA. Despite the significantly enhanced cytotoxicity, the mode of cell death was not changed as CsA completely abrogated cell death. These results indicate that BE has potent anti-tumor activity especially in combination with cholesterol
- …