87 research outputs found
Recommended from our members
Transcription factor-pathway co-expression analysis reveals cooperation between SP1 and ESR1 on dysregulating cell cycle arrest in non-hyperdiploid multiple myeloma
Multiple myeloma is a hematological cancer of plasma B-cells and remains incurable. Two major subtypes of myeloma, hyperdiploid (HMM) and non-hyperdiploid myeloma (NHMM), have distinct chromosomal alterations and different survival outcomes. Transcription factors (TrFs) have been implicated in myeloma oncogenesis but their dysregulation in myeloma subtypes are less studied. Here we develop a TrF-pathway co-expression analysis to identify altered co-expression between two sample types. We apply the method to the two myeloma subtypes and the cell cycle arrest pathway, which is significantly differentially expressed between the two subtypes. We find that TrFs MYC, NF-ĪŗB and HOXA9 have significantly lower co-expression with cell cycle arrest in HMM, co-occurring with their over-activation in HMM. In contrast, TrFs ESR1, SP1 and E2F1 have significantly lower co-expression with cell cycle arrest in NHMM. SP1 ChIP targets are enriched by cell cycle arrest genes. These results motivate a cooperation model of ESR1 and SP1 in regulating cell cycle arrest, and a hypothesis that their over-activation in NHMM disrupts proper regulation of cell cycle arrest. Co-targeting ESR1 and SP1 shows a synergistic effect on inhibiting myeloma proliferation in NHMM cell lines. Therefore, studying TrF-pathway co-expression dysregulation in human cancers facilitates forming novel hypotheses towards clinical utility
Recommended from our members
A Novel Role for CCL3 (MIP-1Ī±) in Myeloma-induced Bone Disease via Osteocalcin Downregulation and Inhibition of Osteoblast Function
Upregulation of cytokines and chemokines is a frequent finding in multiple myeloma (MM). CCL3 (also known as MIP-1Ī±) is a pro-inflammatory chemokine whose levels in the MM microenvironment correlate with osteolytic lesions and tumor burden. CCL3 and its receptors, CCR1 and CCR5, contribute to the development of bone disease in MM by supporting tumor growth and regulating osteoclast (OC) differentiation. Here, we identify inhibition of osteoblast (OB) function as an additional pathogenic mechanism in CCL3-induced bone disease. MM-derived and exogenous CCL3 represses mineralization and osteocalcin production by primary human bone marrow stromal cells and HS27A cells. Our results suggest that CCL3 effects on OBs are mediated by ERK activation and subsequent downregulation of the osteogenic transcription factor osterix. CCR1 inhibition reduced ERK phosphorylation and restored both osterix and osteocalcin expression in the presence of CCL3. Finally, treating SCID-hu mice with a small molecule CCR1 inhibitor suggests an upregulation of osteocalcin expression along with OC downregulation. Our results show that CCL3, in addition to its known catabolic activity, reduces bone formation by inhibiting OB function and therefore contributes to OB/OC uncoupling in MM
Recommended from our members
Targeting homologous recombination and telomerase in Barrettās adenocarcinoma: Impact on telomere maintenance, genomic instability, and tumor growth
Homologous recombination (HR), a mechanism to accurately repair DNA in normal cells, is deregulated in cancer. Elevated/deregulated HR is implicated in genomic instability and telomere maintenance, which are critical lifelines of cancer cells. We have previously shown that HR activity is elevated and significantly contributes to genomic instability in BAC. The purpose of this study was to evaluate therapeutic potential of HR inhibition, alone and in combination with telomerase inhibition, in BAC. We demonstrate that telomerase inhibition in BAC cells increases HR activity, RAD51 expression, and association of RAD51 to telomeres. Suppression of HR leads to shorter telomeres as well as markedly reduced genomic instability in BAC cells over time. Combination of HR suppression (whether transgenic or chemical) with telomerase inhibition, causes a significant increase in telomere attrition and apoptotic death in all BAC cell lines tested, relative to either treatment alone. A subset of treated cells also stain positive for Ī²-galactosidase, indicating senescence. The combined treatment is also associated with decline in S-phase and a strong G2/M arrest, indicating massive telomere attrition. In a subcutaneous tumor model, the combined treatment resulted in the smallest tumors, which were even smaller (P=0.001) than those resulted from either treatment alone. Even the tumors removed from these mice had significantly reduced telomeres and evidence of apoptosis. We therefore conclude that although telomeres are elongated by telomerase, elevated RAD51/HR assist in their maintenance/stabilization in BAC cells. Telomerase inhibitor prevents telomere elongation but induces RAD51/HR, which contribute to telomere maintenance/stabilization and prevention of apoptosis, reducing the efficacy of treatment. Combining HR inhibition with telomerase, makes telomeres more vulnerable to degradation and significantly increases/expedites their attrition, leading to apoptosis. We therefore demonstrate that a therapy, targeting HR and telomerase, has potential to prevent both the tumor growth and genomic evolution in BAC
The monoclonal antibody nBT062 conjugated to maytansinoids has potent and selective cytotoxicity against CD138 positive multiple myeloma cells _in vitro_ and _in vivo_
CD138 (Syndecan1) is highly expressed on multiple myeloma (MM) cells. In this study, we examined the anti-MM effect of murine/human chimeric CD138-specific monoclonal antibody (mAb) nBT062 conjugated with highly cytotoxic maytansinoid derivatives _in vitro_ and _in vivo_. These agents significantly inhibited growth of CD138-positive MM cell lines and primary tumor cells from MM patients, without cytotoxicity against peripheral blood mononuclear cells from healthy volunteers. In MM cells, they induced G2/M cell cycle arrest followed by apoptosis associated with cleavage of PARP and caspase-3, -8 and -9. Non-conjugated nBT062 completely blocked cytotoxicity induced by nBT062-maytansinoid conjugate, confirming that binding is required for inducing cytotoxicity. Moreover, nBT062-maytansinoid conjugates blocked adhesion of MM cells to bone marrow stromal cells (BMSCs). Co-culture of MM cells with BMSCs, which protects against dexamethasone-induced death, had no impact on the cytotoxicity of the immunoconjugates. Importantly, nBT062-SPDB-DM4 and nBT062-SPP-DM1 significantly inhibited MM tumor growth _in vivo_ in both human multiple myeloma xenograft mouse models and in SCID-human bone grafts (SCID-hu mouse model). These studies provide the preclinical framework supporting evaluation of nBT062-maytansinoid derivatives in clinical trials to improve patient outcome in MM
In-depth Analysis of Alternative Splicing Landscape in Multiple Myeloma and Potential Role of Dysregulated Splicing Factors
Splicing changes are common in cancer and are associated with dysregulated splicing factors. Here, we analyzed RNA-seq data from 323 newly diagnosed multiple myeloma (MM) patients and described the alternative splicing (AS) landscape. We observed a large number of splicing pattern changes in MM cells compared to normal plasma cells (NPC). The most common events were alterations of mutually exclusive exons and exon skipping. Most of these events were observed in the absence of overall changes in gene expression and often impacted the coding potential of the alternatively spliced genes. To understand the molecular mechanisms driving frequent aberrant AS, we investigated 115 splicing factors (SFs) and associated them with the AS events in MM. We observed that ~40% of SFs were dysregulated in MM cells compared to NPC and found a significant enrichment of SRSF1, SRSF9, and PCB1 binding motifs around AS events. Importantly, SRSF1 overexpression was linked with shorter survival in two independent MM datasets and was correlated with the number of AS events, impacting tumor cell proliferation. Together with the observation that MM cells are vulnerable to splicing inhibition, our results may lay the foundation for developing new therapeutic strategies for MM. We have developed a web portal that allows custom alternative splicing event queries by using gene symbols and visualizes AS events in MM and subgroups. Our portals can be accessed at http://rconnect.dfci.harvard.edu/mmsplicing/ and https://rconnect.dfci.harvard.edu/mmleafcutter/
Recommended from our members
Widespread intronic polyadenylation diversifies immune cell transcriptomes
Alternative cleavage and polyadenylation (ApA) is known to alter untranslated region (3Ź¹UTR) length but can also recognize intronic polyadenylation (IpA) signals to generate transcripts that lose part or all of the coding region. We analyzed 46 3Ź¹-seq and RNA-seq profiles from normal human tissues, primary immune cells, and multiple myeloma (MM) samples and created an atlas of 4927 high-confidence IpA events represented in these cell types. IpA isoforms are widely expressed in immune cells, differentially used during B-cell development or in different cellular environments, and can generate truncated proteins lacking C-terminal functional domains. This can mimic ectodomain shedding through loss of transmembrane domains or alter the binding specificity of proteins with DNA-binding or proteināprotein interaction domains. MM cells display a striking loss of IpA isoforms expressed in plasma cells, associated with shorter progression-free survival and impacting key genes in MM biology and response to lenalidomide
Loss of GABARAP mediates resistance to immunogenic chemotherapy in multiple myeloma
: Immunogenic cell death (ICD) is a form of cell death by which cancer treatments can induce a clinically relevant anti-tumor immune response in a broad range of cancers. In multiple myeloma (MM), the proteasome inhibitor bortezomib is an ICD inducer and creates durable therapeutic responses in patients. However, eventual relapse and resistance to bortezomib appear inevitable. Here, by integrating patient transcriptomic data with an analysis of calreticulin (CRT) protein interactors, we found that GABARAP is a key player whose loss prevented tumor cell death from being perceived as immunogenic after bortezomib treatment. GABARAP is located on chromosome 17p, which is commonly deleted in high-risk MM patients. GABARAP deletion impaired the exposure of the eat-me signal CRT on the surface of dying MM cells in vitro and in vivo, thus reducing tumor cell phagocytosis by dendritic cells and the subsequent anti-tumor T cell response. Low GABARAP was independently associated with shorter MM patient survival and reduced tumor immune infiltration. Mechanistically, we found that GABARAP deletion blocked ICD signaling by decreasing autophagy and altering Golgi apparatus morphology, with consequent defects in the downstream vesicular transport of CRT. Conversely, upregulating autophagy using rapamycin restored Golgi morphology, CRT exposure and ICD signaling in GABARAPKO cells undergoing bortezomib treatment. Therefore, coupling an ICD inducer, like bortezomib, with an autophagy inducer, like rapamycin, may improve patient outcomes in MM, where low GABARAP in the form of del(17p) is common and leads to worse outcomes
Heterogeneity of genomic evolution and mutational profiles in multiple myeloma.
Multiple myeloma is an incurable plasma cell malignancy with a complex and incompletely understood molecular pathogenesis. Here we use whole-exome sequencing, copy-number profiling and cytogenetics to analyse 84 myeloma samples. Most cases have a complex subclonal structure and show clusters of subclonal variants, including subclonal driver mutations. Serial sampling reveals diverse patterns of clonal evolution, including linear evolution, differential clonal response and branching evolution. Diverse processes contribute to the mutational repertoire, including kataegis and somatic hypermutation, and their relative contribution changes over time. We find heterogeneity of mutational spectrum across samples, with few recurrent genes. We identify new candidate genes, including truncations of SP140, LTB, ROBO1 and clustered missense mutations in EGR1. The myeloma genome is heterogeneous across the cohort, and exhibits diversity in clonal admixture and in dynamics of evolution, which may impact prognostic stratification, therapeutic approaches and assessment of disease response to treatment
Recommended from our members
Targeting IL-17A in Multiple Myeloma: A Potential Novel Therapeutic Approach in Myeloma
We have previously demonstrated that interleukin-17A (IL-17) producing Th17 cells are significantly elevated in blood and bone marrow (BM) in multiple myeloma (MM) and IL-17A promotes MM cell growth via the expression of IL-17 receptor. In this study, we evaluated anti-human IL-17A human monoclonal antibody (mAb), AIN457 in MM. We observe significant inhibition of MM cell growth by AIN457 both in the presence and absence of BM stromal cells (BMSC). While IL-17A induces IL-6 production, AIN457 significantly down-regulated IL-6 production and MM cell-adhesion in MM-BMSC co-culture. AIN-457 also significantly inhibited osteoclast cellādifferentiation. More importantly, in the SCIDhu model of human myeloma administration of AIN-457 weekly for 4 weeks after the first detection of tumor in mice led to a significant inhibition of tumor growth and reduced bone damage compared to isotype control mice. To understand the mechanism of action of anti-IL-17A mAb, we report here, that MM cells express IL-17A. We also observed that IL-17A knock-down inhibited MM cell growth and their ability to induce IL-6 production in co-cultures with BMSC. These pre-clinical observations suggest efficacy of AIN 457 in myeloma and provide the rationale for its clinical evaluation for anti-myeloma effects and for improvement of bone disease
- ā¦