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Abstract

We have previously demonstrated that interleukin-17A (IL-17) producing Th17 cells are 

significantly elevated in blood and bone marrow (BM) in multiple myeloma (MM) and IL-17A 

promotes MM cell growth via the expression of IL-17 receptor. In this study, we evaluated anti-

human IL-17A human monoclonal antibody (mAb), AIN457 in MM. We observe significant 

inhibition of MM cell growth by AIN457 both in the presence and absence of BM stromal cells 

(BMSC). While IL-17A induces IL-6 production, AIN457 significantly down-regulated IL-6 

production and MM cell-adhesion in MM-BMSC co-culture. AIN-457 also significantly inhibited 

osteoclast cell–differentiation. More importantly, in the SCIDhu model of human myeloma 

administration of AIN-457 weekly for 4 weeks after the first detection of tumor in mice led to a 

significant inhibition of tumor growth and reduced bone damage compared to isotype control 

mice. To understand the mechanism of action of anti-IL-17A mAb, we report here, that MM cells 

express IL-17A. We also observed that IL-17A knock-down inhibited MM cell growth and their 

ability to induce IL-6 production in co-cultures with BMSC. These pre-clinical observations 

suggest efficacy of AIN 457 in myeloma and provide the rationale for its clinical evaluation for 

anti-myeloma effects and for improvement of bone disease.
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Introduction

Bone marrow (BM) micro-environments have been shown to play a critical role in multiple 

myeloma (MM) pathobiology
1
. Immune cells form an important component of this micro-

environment, and are modulated by the conditions generated in the BM
2
. We have 

previously reported dysfunctional regulatory T cells
3
 and an increased number of IL-17A 

expressing T helper (Th17) cells in MM
4
. These immune abnormalities have been 

considered to favor tumor cell progression, both directly as well as by suppressing anti-MM 

immune responses. These immune changes also induce associated bone disease and 

predispose patients to immune-paresis and associated infectious complications
5
.

T helper cells play an important role in developing a robust and lasting immune response 

against bacterial, fungal and viral infections as well as against tumor cells. Besides Th1, 

Th2
6
 and Treg cells

3,7–8
, Th17cells play an important role in immune protection against 

pathogens
9–11

. Furthermore, Th17 cells participate in mediating immuno-pathological 

manifestations of a number of autoimmune diseases
12–15

. Interestingly, interactions between 

MM cells and the BM micro-environment lead to a production of a number of cytokines and 

chemokines (TGF-β, IL-6, IL-1β and IL23)
1
 that skew the T helper cell subset differentiation 

to Th17 cells. The Th17 cells in turn, both directly and via pro-inflammatory cytokines 

produced by them, modulate tumor cell growth, suppress Th1 immune responses
4
 and affect 

other components of tumor micro-environment, especially osteoid elements as in rheumatoid 

arthritis
15–16

. Higher proportion of Th17 cells are induced from naïve CD4 T cells in MM 

compared to healthy donors
4
. Dendritic cells (DC) also induce a higher number of Th17 

cells in BM of MM patients
17

. Furthermore, serum levels of IL-17 are significantly elevated 

in MM compared to healthy donors and this increase is stage-dependent
18–22

. IL-17 has also 

been shown to play a critical role in the genesis of bone disease in myeloma by mediating 

osteoclast formation and activation
23–24

. On the other hand, bisphophonates treatment is 

shown to decrease serum levels of IL-17, thus reducing the bone damage reported in MM
25

. 

IL-17A induces significant increase in proliferation of MM cell lines and primary cells in 

vitro via IL-17A receptor (IL-17RA)
4
 expressed on tumor cells and IL-17A pretreatment led 

to the development of significantly larger tumors compared to the control in murine 

xenograft model of MM
4
. Increased frequency of Th17 cells is also observed in a number of 

other human malignancies including, ovarian, prostate, renal, and pancreatic 

carcinomas
26–28

. These studies provided the rationale to pre-clinically evaluate the effects of 

anti-IL-17A mAb on MM cell-growth both in vitro and in vivo. The results show that MM 

cell-growth and survival are significantly inhibited by anti-IL-17A mAb both in vitro as well 

as in animal studies. IL-17A is produced by myeloma cells and its suppression affects 

myeloma cell growth indicating a possibility of an autocrine loop.

Materials and Methods

Patient samples

Patient BM samples were collected from newly-diagnosed myeloma patients, and from 

patients without treatment for at least 3 months. These samples were collected after 

informed consent in accordance with the Declaration of Helsinki and approved by the 

Prabhala et al. Page 2

Leukemia. Author manuscript; available in PMC 2016 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



institutional review board (IRB) from Dana-Farber Cancer Institute. Healthy donor bone 

marrow samples were obtained from AllCells (Emeryville, CA).

Myeloma cell-proliferation assays

MM cells (MM1S, KMS-12PE, RPMI 8226, KMS-12BM, OPM-1, OPM-2, INA-6, H929, 

U226, and ARP1), cultured in RPMI 1640 supplemented with 10% FBS and antibiotics for 

three days in the presence of isotype or anti-IL-17A mAb (10 µg/ml, AIN 457, Novartis). 

Proliferation was measured by 3H-thymidine incorporation and MTT assay (Life 

Technologies, Grand Island, NY, USA). Co-culture studies were performed with BMSC in 

the presence of isotype control antibody or AIN 457. IL-6 with or without AIN 457 and its 

antibody with or without IL-17A (R & D Systems, Mineapolis, MN, USA)) were used in co-

culture to determine the growth and proliferation in these assays. Colony forming assays 

were performed using MethoCult agar media (Stem Cell Technologies, Vancouver, BC, 

Canada) in the presence of isotype control antibody or anti-IL-17A mAb for three weeks
4
.

Measurement of IL-6 production by IL-17A and inhibition by AIN 457 using ELISA assays

BMSC were cultured for three days in the presence or absence of IL-17A (100ng/ml), IL-21, 

IL-22, IL-23, IL-27 and LPS at 10ng/ml concentration. For antibody inhibitory studies, 

BMSC in the presence or absence of MM cell-lines was cultured with isotype control 

antibody, or IL-17A, or anti-IL-17A mAb or in combination with IL-17A + anti-IL-17A 

mAb. For ex-vivo studies, the fetal bone chips with MM cells were incubated in the presence 

of isotype control antibody or anti-IL-17A mAb for 2 days. Myeloma cells were co-cultured 

with BMSC in the presence of IL-17A with or without cell-signaling inhibitors (JAK2, 

STAT3, JNK, MEK, NFkB and PI3 inhibitors at 10µM from Cell Signaling, Danvers, MA, 

USA). IL-6 production was measured by standard ELISA (R&D Systems, Minneapolis, 

MN). The immunohistochemical analysis of myeloma cells in the bones was performed by 

staining them with anti-CD138 antibodies
4
.

Adhesion Assay

Cell adhesion assay was performed as previously describe
29

. In brief, serum-starved MM 

cells (5 × 106/mL) were first labeled with calcein AM (Molecular Probes, Eugene, OR) and 

cultured with BMSC in the presence of isotype control antibody or anti-IL-17A mAb. The 

absorbance of each well was measured at 492/520 nm plate reader, as described
4
.

Osteoclast formation

As described earlier
30

, osteoclasts (OCs) were differentiated from BMMCs from healthy 

volunteers in 6-well plates. Adherent cells were cultured for 21 days in α-MEM containing 

with (positive control) or without (negative control) 50 ng/mL of macrophage colony-

stimulating factor (M-CSF; R&D Systems, Minneapolis, MN) and RANKL (PeproTech, 

Rocky Hill, NJ, USA) with anti-IL-17A mAb or isotype control antibody at 10µg/ml 

concentration. Cells stained for tartrate-resistant acid phosphatase (TRAP) using an acid-

phosphatase leukocyte staining kit (Sigma Aldrich, St Louis, MO, USAl).
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Myeloma murine Xenograft model

Six- to eight week old male Fox Chase CB-17 severe combined immune-deficient (SCID) 

mice (Charles River Laboratories Intl. Inc., Wilmington, MA, USA) were injected with five 

million OPM-1 myeloma cells with isotype or AIN 457 ((10µg/ml)by sc route with 

approvals by the Institutional Animal Care and Use Committee (IACUC) (VA Boston 

Healthcare System). Tumor volume was measured at indicated time intervals as described 

previously
31

. In another set of experiments SCID mice were treated with with weekly sc 

injections following MM cell-injections. In addition, Balb/C mice were injected with murine 

plasmacytoma cell-line (ATCC CCL167/MPC11) and treated with isotype control antibody 

or murine anti-IL-17A mAb (10µg/ml) for a week with sc injections and tumor volumes 

were measured.

SCIDhu human myeloma model

Human fetal bone grafts were subcutaneously implanted into SCID mice (SCID-hu), as 

previously described
32

. Four weeks following bone implantation, 2.5×106 INA-6 MM cells 

were injected directly into the human bone implant. One group was treated with isotype 

control antibody and another group of mice was treated weekly subcutaneously with 

AIN-457 (10µg/ml) for four consecutive weeks following first detection of tumor.. Tumor 

growth was evaluated by measuring serum level of soluble humans IL-6R with ELISA R & 

D Systems).

MicroCT analysis of bones

The bone damage caused by myeloma cells from these mice was assessed by micro-

computed tomography (microCT) analysis at the end of the study as described
33

.

Quantitative PCR and western blot analysis

Quantitative PCR was performed for IL-17A using RNA isolated from MM cell-lines and 

purified MM primary cells. Results are presented as relative expression value in comparison 

with GAPDH. Cell lysates were probed with anti-sera to IL-17A and GAPDH (Santa Cruz 

Biotech, Santa Cruz, CA, USA). Myeloma cell lines were stained with isotype control 

antibody or anti–IL-17A antibody and analyzed by confocal microscopy. One representative 

cell-line of 4 experiments is shown at 640 magnification
4
.

siRNA and shRNA transfections

MM cells (U266) were transfected with siRNA or sh RNA or respective controls (Santa 

Cruz Biotech) for IL-17A and cultured to measure viability, colony formation and IL-6 

levels with BMSC.

Statistical analysis

Statistical analyses were performed by student ‘t’ test. P < 0.05 was considered statistically 

significant.
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Results

Growth inhibitory activity of anti-IL-17A antibody on myeloma

As IL-17A promotes myeloma cell growth and survival
4
, we investigated the effects of 

human anti-IL-17A monoclonal antibody (AIN-457) in MM. As seen in Figure 1A, anti-

IL-17A mAb significantly inhibited MM cell proliferation measured by 3H-thymidine 

incorporation (−21.8±2.14%, p<0.05) compared with proliferation of MM cell-lines with 

isotype control antibody. The inhibitory effect of anti-IL-17A mAb on myeloma cell-growth 

(−16.2± 2.3, p<0.05) compared with cell-growth of MM cell-lines with isotype control 

antibody was also observed using MTT assay. (Figure 1 B). We observed that anti-IL-17A 

mAb significantly inhibited colony formation in methoCult colony assay (40±5, p<0.05, 

compared to isotype control antibody, 80±4) (N=3) and with primary MM cells (N=4) 

(31±5, p<0.05, compared to isotype control, 84±7) (Figure 1C and D). These results suggest 

that anti-IL-17A mAb significantly inhibits growth of MM cell-lines and primary cells in 

vitro. We also observed anti-IL-6 antibody in the presence of IL-17A significantly reduced 

growth and proliferation induced by IL-17A in co-culture with BMSC, however, it did not 

take to control level in both thymidine incorporation (Figure 1E) and in MTT assays (Figure 

1F). On the other hand, adding IL-6 in the presence of anti-IL-17A antibody slightly 

increased growth and proliferation of myeloma cells in co-culture with BMSC and it did not 

restore the growth and proliferation of MM cells to the control level.

Down regulation of BMSC-mediated MM cell-growth by anti-IL-17A antibody via blockade 
of IL-6 production

We evaluated the influence of anti-IL-17A mAb on BMSC-mediated MM cell-growth. As 

seen in Figure 2A, anti-IL-17A mAb significantly inhibited MM cell-proliferation 

(−22.7±2.9%, p<0.05) in presence of BMSC compared with MM cell-proliferation in 

presence of BMSC with isotype control antibody in co-culture assays as measured by 3H-

thymidine incorporation.

It is well established that IL-6 produced by MM-BMSC interaction mediates MM cell 

growth. So we further investigated whether IL-17A affects IL-6 production by BMSC alone 

or in co-culture assays and whether anti-IL-17A mAb mediates part of its activity via its 

effect on IL-6 produced by BMSC. We evaluated the effect of the number of cytokines 

associated with Th17 pro-inflammatory pathway (IL-21, IL-22, IL-23, IL-27 and TGF-β) on 

IL-6 production by BMSCs. As seen in Figure 2B, only IL-17A, in addition to LPS used as a 

positive control, was able to induce significant increase in IL-6 production by BMSC 

compared with endogenous or base-line IL-6 production by BMSC without LPS. We further 

evaluated the influence of anti-IL-17A mAb on IL-17A-induced IL-6 production by BMSC 

alone or in co-culture systems. As seen in Figure 2C, IL-17A was able to significantly 

increase IL-6 production by BMSC alone (360±37% increase compared to endogenous IL-6 

production by BMSC alone, p<0.05, in the left side of Figure 2C) and in co-culture with 

MM cells (514±76% increased compared to endogenous levels of IL-6 by BMSC alone and 

co-culture controls, p<0.05, in the right of Figure 2C). While anti-IL-17A mAb was able to 

significantly decrease (p<0.05) the IL-6 production by BMSC (77±4.5%, in the left side of 

Figure 2C) compared with endogenous levels of IL-6 by BMSC alone with isotype control 
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antibody and in co-culture system (107±9% in the right of Figure 2C) compared with 

endogenous levels of IL-6 in co-cultures with isotype control antibody (212±32%). In 

addition, when we used anti-IL-17A mAb + IL-17A in combinational studies, we observed 

that anti-IL-17A mAb was also able to reduce significantly IL-6 production in presence of 

IL-17A, (142±18% compared with IL-6 production by BMSC with IL-17A with isotype 

control antibody, 360±37%, in the left side of Figure 2C) and in co-culture (245±33% 

compared with IL-6 production in co-culture with IL-17A with isotype control antibody, 

514±76%, in the right of Figure 2C). We next evaluated the effect of anti-IL-17A mAb on 

the ability of myeloma cells to bind to BMSC using established adhesion assay. Calcein- 

labeled MM cells were co-cultured with BMSC for 4 hours and adhesion was measured as 

described in methods. Presence of anti-IL-17A mAb (N=3) significantly reduced (27±3.8%, 

p<0.05) MM cell-BMSC adhesion as compared to adhesion of MM cells to BMSC in the 

presence of isotype control antibody as measured by the absorbance using a fluorescence 

plate reader (Figure 2D). Finally, when we inject MM cells ex-vivo into human fetal bone 

chips IL-6 production was significantly reduced in presence of anti-IL-17A mAb, compared 

to IL-6 production in the presence of isotype control antibody after 48 hours (Figure 2E). 

Analysis of these bone chips by immune-histochemistry using anti-CD138 mAb showed 

significant reduction of CD138+ expression (dim or low) of plasma cells by anti-IL-17A 

mAb compared to CD138+ expression (bright or high) in the presence of isotype control 

antibody (Figure 2F). When myeloma cells were co-cultured with BMSC in presence of 

IL-17A with or without different cell-signaling inhibitors (JAK2, STAT3, JNK, MEK, NFkB 

and PI3 inhibitors), IL-6 production was significantly inhibited by all of these signaling 

pathway inhibitors except STAT3.

Down-regulation of osteoclast development in vitro by ant-IL-17A mAb

IL-17 has also been shown to play a critical role in the genesis of bone disease in myeloma 

by mediating osteoclast formation and activation
23–24

. Normal BMMC were cultured for 

three weeks in osteoclast-supporting medium with isotype control antibody or anti-IL-17A 

mAb, and stained for TRAP+ multi-nucleated osteoclast cells. TRAP-positive stained cells 

containing 5 or more nuclei/cell were enumerated with the aid of microscope and image J 

software. A representative image was depicted (Figure 3A) showing pink cells as 

TRAP+multi-nucleated osteoclasts in positive control in the presence of isotype control 

antibody as compared with anti-IL-17A mAb treated group showing osteoblast-looking 

growth patterns. As seen in Figure 3B, the osteoclast cell number was significantly 

decreased (by 42%) by anti-IL-17A mAb treatment (23±4) compared with the positive 

control with isotype control antibody (55±4) (p<0.05) in osteoclast-supporting media.

Inhibition of human myeloma cell-growth in vivo by systemic administration of anti-IL-17A 
mAb in murine models of human myeloma

Next, we evaluated the efficacy of anti-IL-17A mAb in animal models using two different 

animal models of human myeloma. Initially in xenograft model, SCID mice were injected 

with myeloma cells along with isotype control antibody or AIN 457 subcutaneously. Tumor 

volumes were measured at 24 and 30 day time intervals after MM cell injections. As seen in 

Figure 4A in a representative of two experiments, the presence of anti-IL-17A mAb 

significantly reduced tumor size (37% inhibition at 24 days and 47% inhibition at 30 days, 
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p<0.05) compared to the tumor volumes in the presence of isotype control antibody 

treatment group at both time points evaluated, as seen in Figure 4A. The reduction in tumor 

volumes by anti-IL-17A mAb may be due to both either inhibiting tumor growth and/or 

tumor engraftment in this animal model. In another set of experiments, SCID mice were 

treated with weekly sc injections following MM cell-injections. Even though we observed 

that anti-IL-17A mAb reduced (by 35% at 24 days after MM cell injection) myeloma growth 

in this SCID xenograft mice study and the difference in tumor volumes between isotype 

control antibody (2007±584mm3) and treated groups (1299±282mm3) is not statistically 

significant, as seen in Figure 4B. To evaluate the efficacy of anti-IL-17A mAb in immune 

competent mice, Balb/C mice were injected with murine plasmacytoma cell-line (ATCC 

CCL167/MPC11) and treated with isotype control antibody (N=13) or murine anti-IL-17A 

mAb (N=20) (10µg per mice) for a week and their tumor volumes were measured. However, 

we observed that anti-IL-17A mAb reduced (by 32%) myeloma growth in this immune 

competent mice study and the difference in tumor volumes between the isotype control 

antibody (1217±207mm3) and the treated groups (827±113mm3) was not statistically 

significant by the student “t” test evaluation.

Next, we evaluated the efficacy of anti-IL-17A mAb in the SCIDhu animal model of human 

myeloma. This model represents human myeloma development in the presence of BMSC. 

SCID mice were transplanted with human fetal bone-chips, and after four weeks, myeloma 

cells were injected into the fetal bones. Following the first detection of the tumor, one group 

of mice was treated with human IgG isotype control antibody and the other group of mice 

was treated with anti-IL-17A mAb (10µg/mouse/injection) subcutaneously with weekly 

injections, for four weeks. Serum samples were collected weekly and level of human soluble 

IL-6R was measured by standard commercially available ELISA as a measure of tumor 

growth
29

. As seen in Figure 5A a representative of two experiments, anti-IL-17 mAb 

significantly inhibited (by 5 times-lower) tumor growth (5.9±2.8 ng/ml of sIL-6R) compared 

to isotype control antibody (30.9±10.5 ng/ml of sIL-6R) mice (p<0.05). This SCIDhu human 

myeloma model is very similar to human myeloma conditions with its BM 

microenvironmental settings. The efficacy of this anti-IL-17A mAb in this SCIDhu human 

myeloma against myeloma cells is excellent by inhibiting 81% of myeloma cells ability to 

produce soluble IL-6 receptor while they are growing. We have used this SCIDhu human 

myeloma model for evaluating pre-clinical efficacy of number of agents including 

chemotherapeutic agents and antibodies. In our pre-clinical efficacy evaluation studies using 

the SCIDhu human myeloma model over the past decade, the anti-IL-17A mAb was shown 

to be the best and have the highest efficacy against myeloma. As we are seeing obvious 

statistically significant differences between isotype control antibody and anti-IL-17A mAb 

treated mice, and as results are confirmed in 2 different animal models, we believe it 

provides adequate evidence for clinical evaluation of anti-IL-17 mAb in MM. Additionally, 

anti-IL-17A mAb was also able to prevent the bone resorption caused by MM cells. At the 

termination of the experiment, microCT studies of the human bones harvested from animals 

reveals protection by anti-IL17A from the bone resorption associated with myeloma tumor 

growth in the presence isotype control antibody as seen in Figure 5B. The measurements of 

bone resorption showed that the prevention of resorption is significantly higher by the anti-
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IL-17A mAb treatment group compared with isotype control antibody treatment group 

(Figure 5C).

Expression of IL-17A in myeloma cells and functional consequences by knockdown with 
siRNA and shRNA on growth and survival of myeloma cells

To validate expression of IL-17A by MM cells, we performed quantitative RT-PCR in both 

MM cell lines and CD138+ primary MM cells from patients. We observed the expression of 

IL-17A in majority of MM cell-lines as well as primary MM cells (Figure 6A/B). The 

IL-17A expression was higher in 5 out 7 tested MM cell-lines compared with the expression 

of IL-17A in PBMC collected from healthy donor. Expression of IL-17A protein was 

confirmed by western blot in all MM cell-lines and 7 out of 9 purified primary MM cells 

(Figure 6C/D). The IL-17A protein levels were lower in CD138+ primary MM cells 

compared with cell-lines and Th17 cells as a positive control. Normal CD138+ cells 

collected from healthy donors have shown no IL-17A protein. Finally, we also show intra-

cellular IL-17A protein in MM cells by confocal microscopy (Figure 6E).

In order to investigate the functional consequences of IL-17A expression by MM cell-line 

(U266), we evaluated impact of IL-17A knock-down on MM cell growth and colony 

formation. IL-17A Knock-down, using IL-17-specific siRNA (Figure 7A) inhibited MM 

cell-growth as well as colony formation in MethoCult agar plates (Figure 7C). We also 

confirmed these results using IL-17A-specifc shRNA (Figure 7B). IL-17A induces IL-6 

production by stromal cells in various tissues20 and we have previously reported that 

IL-17A elevates IL-6 production by BMSC. So, we evaluated impact of IL-17A knock-down 

on IL-6 production by BMSC. IL-6 production in MM/BMSC co-culture was significantly 

reduced following IL-17A knock-down in MM cells (Figure 7D). These results show that 

IL-17A expressed by MM cells have impact on growth of MM cell as well as on the 

microenvironment.

Discussion

IL-17A, a key pro-inflammatory cytokine, is predominantly produced by T helper cells in 

addition to other immune cell-types including γδ and CD8+ T cells, and NKT cells
34

. 

Although it provides protective effects against intra-cellular bacterial/viral, fungal and 

parasitic infectious agents
9
, it plays a deleterious role in immune-pathology of 

autoimmune
13

 and inflammatory diseases including asthma
35

, in addition to cancer
26–28,36

. 

The demonstration of elevated levels of Th17 cells and serum IL-17A in myeloma may help 

explain the reported higher incidence of MM in patients with autoimmune diseases. Our 

recent data also suggests elevated levels of other Th17-associated pro-inflammatory 

cytokines including IL-21, IL-22 and IL-23 in both peripheral blood and BM sera samples 

from MM compared to control samples
4
. Moreover, IL-17A induces MM cell proliferation 

with or without BMSC and increases MM cell adhesion to BMSC
4
. The presence and 

requirement of IL-17RA on MM cells further supports the role of IL-17A in MM cell 

growth and survival, and confirms it as a novel therapeutic target. IL-17A effects on 

immuno-paresis in myeloma with suppressed Th1 responses in the presence of IL-22
4
 and 
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its activating effects on osteoclast with consequent effect on bone disease in myeloma
23–24

, 

provide added rationale to the target IL-17A in MM.

Here, we have evaluated the preclinical efficacy of human anti-IL-17A mAb on MM in vitro 

and in vivo. We observe that anti-IL-17A mAb significantly inhibit the growth of MM cell 

lines as well as primary cells and are able to overcome protective effects of BMSCs. The 

observed effects of anti-IL-17A mAb on MM cells in culture as well as in colony assay is 

intriguing and raises the question about the source of IL-17A in this system. In MM, we and 

others, have shown that IL-17A supports the MM cell growth and survival
4,17,23

. Further 

disease progression was observed with increased IL-17A serum levels
18–22

. Reduction of 

IL-17 after bisphosphonate treatment has also been reported
25

. These studies point out a 

significant role for IL-17A modulation in myeloma therapeutics.

It has been well established that IL-17A may cause its deleterious pathological effects 

through the increased production of IL-6, particularly in rheumatoid arthritis
37–38

. We have 

shown for the first time that MM IL-17A induces IL-6 production by BMSC alone and in 

co-culture with MM cells. In addition, these results indicate that the other pro-inflammatory 

cytokines-associated with Th17 cells including IL-21, IL-22, IL-23 and IL-27 do not induce 

the IL-6 production by BMSC. We observed that anti-IL-17A mAb was able to significantly 

down-regulate MM cell-BMSC adhesion and IL-6 production. These results were consistent 

with previous observations that IL-6 production was elevated in stroma in tissues
38

. In order 

to show the importance of IL-17A in the production of IL-6 in co-culture settings, 

neutralization studies showed that anti-IL-6 antibody did not completely inhibit IL-17A 

effects and adding IL-6 did not restore AIN 457 inhibition on the growth and proliferation of 

MM cells. These studies taken together indicate that IL-17A-mediated growth and 

proliferation MM cells are in part mediated by IL-6 and in part mediated other factors. 

IL-17A induces number of pro-inflammatory factors in addition to IL-6
38

.

Since elevated levels of IL-6 and MM-BMSC interaction are involved in bone damaging 

effects during the progression of myeloma disease, inhibition of effects of IL-17A on IL-6 

production can help improve bone disease in MM. IL-17A increases osteoclast-

differentiation and thereby is partly responsible for associated bone damages observed in 

rheumatoid arthritis
39–40

and IL-17 has also been shown to play a critical role in the genesis 

of bone disease in myeloma by mediating osteoclast formation and activation
23–24

. 

Therefore, we evaluated and observed significant inhibition of TRAP+ multinucleated 

osteoclast cell–differentiation by anti-IL-17A mAb. These results are in agreement with the 

recent report showing that the elevated levels of IL-17A and IL-1β in the BM plasma 

correlate with lytic bone disease in MM patients
23

. We have also observed anti-MM activity 

of anti-IL-17 mAb in two murine models of myeloma; the subcutaneous MM xenograft 

model, where a pre-treatment with anti-IL-17 mAb led to significant reduction in tumor 

volume, and more importantly in the SCIDhu model of human MM cells. In the second 

model the results are especially interesting as we have a human micro-environment in this 

setting providing some of the cellular components of the human BM micro-environment. 

Number of studies has described increased frequency of Th17 cells in other human 

malignancies including, ovarian, prostate, renal, and pancreatic carcinomas
26–28

. Moreover, 

IL-17 has also been linked to poor survival in number of other cancers, including AML, 
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breast, colorectal, liver, lung, and melanoma
40–42

. We have showed that myeloma cells 

express IL-17 by number ways including western blot and quantitative PCR assays in 

addition to confocal microscopy. In human studies, transduction of IL-17 in 3 different non-

small cell lung cancer cell lines, also expressing IL-17 receptors, led to significant increase 

in tumor growth in SCID model compared to control cells suggesting possible role of 

autocrine loop in these cancer cells
43

. Similar in vitro and in vivo results have been also 

reported in cervical cancer suggesting role for IL-17A expression by tumor cells
44

. 

Conversely, regardless of the source of IL-17, IL-17 receptor deficiency has been reported to 

show reduced number of invasive prostate adenocarcinoma with lower rate of cellular 

proliferation suggesting that IL-17-mediated signaling promotes tumor growth
45

. These 

studies collectively suggest that expression of IL-17A and its receptors by tumor cells may 

affect their growth. In our setting it appears that MM cells inherently express both IL-17R as 

we have previously reported
4
, and also IL-17A as reported here. We have also observed the 

functional impact by IL-17A knock-down on tumor cell growth as well as on supporting BM 

microenvironment. The impact of IL-17A produced by MM cells on BMSC is also very 

intriguing. Induction of IL-6 in BMSCs, by MM cell-derived IL-17A, may suggest in part a 

unique pathway for IL-6 production. A report of IL-17 production by MM cell may provide 

an explanation of the source IL-17 in this system
46

. Moreover, we have shown earlier
4
, using 

various methods, that MM cells do express IL-17 receptors, suggesting a possible autocrine 

loop is in play in MM using IL-17A and its receptor pathway. IL-17R-mediated pathways 

are very complex due to the presence of five different IL-17R and warrant further 

confirmative studies. The efficacy of neutralization of IL-17A in a variety of disease states, 

including asthma and lung inflammatory diseases
47

, rheumatoid arthritis
48–49

, and multiple 

sclerosis
50

 where IL-17A participates in the development and/or patho-physiology disease, 

has been shown in addition to other cytokine targets in Th17 pathway
51–52

.

IL-17A is present in synovial fluids in RA and it participates in bone erosion
53

. Efficacy of 

anti-IL-17A mAb has been confirmed in three proof-of-concept trials recently; clinically 

significant improvements were observed in patients with psoriasis, rheumatoid arthritis and 

uveitis, where IL-17A has been implicated in the disease process without major adverse 

effects
54

. The second trial evaluating patients with rheumatoid arthritis where anti-IL-17A 

mAb, ixekizumab (LY2439821), showed improved signs and symptoms of RA without 

strong adverse effects
55

 against psoriasis
56

. The third study is a phase 2, randomized, 

double-blind, placebo-controlled dose-ranging study of brodalumab (AMG 827), a human 

anti-IL17-receptor monoclonal antibody for psoriasis
57

.

In summary, we show that the anti-IL-17A mAb (AIN 457) is able to inhibit MM growth 

and survival both in vitro and in vivo studies by blocking in part, positive autocrine feedback 

loop in addition to inhibiting IL-6 production by BMSC ; it improves bone defects in MM 

and has the potential to improve immune function in MM. These results confirm the 

rationale for clinical evaluation of anti-IL-17 mAb in MM.
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Figure 1a
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Figure 1b

Figure 1. Inhibitory activity of anti-IL-17A antibody on myeloma cell proliferation
(A) Myeloma cell lines alone (N=8) were incubated with isotype control antibody or anti-

IL-17A mAb to measure proliferation by 3H-thymidine incorporation after 3 days. Data is 

presented as percentage inhibition in proliferation in presence of anti-IL-17A mAb 

compared with isotype control antibody and showed as mean ± SEM. (B) Myeloma cell 

lines alone (N=5) were incubated with isotype control antibody or anti-IL-17A mAb to 

measure metabolic activity by MTT assay after 3 days. Data is presented as percentage 
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inhibition in proliferation in presence of anti-IL-17A mAb compared with isotype control 

antibody and showed as mean ± SEM. (C) Myeloma cell lines (U266) were cultured in 

methocult agar plates in the presence of isotype control antibody or anti-IL-17A mAb. 

Representative photomicrograph and results (N=3) are presented. Photographs were 

obtained using a Nikon TE200 microscope (40× objective) with attached camera (Nikon) at 

room temperature (total magnification 200) and analyzed with Metafluor software 

(Molecular Devices). The number of colonies were counted in unit area and presented as 

mean ± SEM. (D) Primary MM cells (N=4) were cultured in methocult agar plates in the 

presence of isotype control antibody or anti-IL-17A mAb. The number of colonies were 

counted in unit area and presented as mean ± SEM. *P <0.05. Myeloma cells (U266) was 

cocultured with BMSC for three days in the presence of isotype, IL-17A with or without 

anti-IL-6 (10 µg/ml) antibody, and anti-IL-17A antibody with or without IL-6 (10ng/ml) and 

proliferation was measured by thymidine incorporation (Figure E) and MTT (Figure F) 

assays. Data is presented as percentage control co-culture proliferation and showed as mean 

± SEM.

Prabhala et al. Page 17

Leukemia. Author manuscript; available in PMC 2016 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2a
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Figure 2b

Figure 2. Down regulation of BMSC-mediated MM cell-growth by anti-IL-17A antibody via 
blockade of IL-6 production
(A) MM cell lines (N=7) were cultured with BMSCs in the presence of isotype control 

antibody or anti-IL-17A mAb and proliferation measured by 3H-thymidine incorporation 

after 3 days and presented as percentage of inhibition in proliferation with isotype control 

antibody. (B) BMSC was cultured for three days in the presence or absence of IL-17A 

(100ng/ml), IL-21, IL-22, IL-23, IL-27 and LPS at 10ng/ml concentration. IL-6 production 

was measured by standard ELISA (R&D Systems, Minneapolis, MN). Bar graph represents 

mean ± SEM of the data (N=4) calculated as percent of increase or decrease in IL-6 levels in 

culture supernatants compared to IL-6 levels (as endogenous IL-6 production) obtained from 

BMSC alone without any stimulation. (C) BMSC in the presence (right or absence (left) of 

MM cell-lines was cultured with isotype control antibody, IL-17A, or anti-IL-17A mAb or 

in combination with IL-17A + anti-IL-17A mAb and IL-6 levels were measured in culture 
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supernatants by ELISA. Bar graph represents mean ± SEM of the data calculated as percent 

of increase or decrease in IL-6 levels in culture supernatants compared to IL-6 levels (as 

endogenous IL-6 production) obtained from BMSC alone with isotype control antibody 

without any stimulation. (D) Serum-starved MM cells were labeled with calcein AM, 

washed, and added to BMSC-coated plates in the presence of isotype control antibody or 

anti-IL-17A mAb for 4 hours and non-adherent cells were removed by washing. Adhesion 

was measured by measuring the absorbance using 492/520 nm filter set with a fluorescence 

plate reader. Results represent mean ± SEM of 3 independent experiments performed in 

triplicate. The absorbance values obtained with isotype control antibody was considered as 

100% and percentage of inhibition was calculated for anti-IL-17A treatment. (E) The fetal 

bone chips with MM cells were incubated in the presence of isotype control antibody or 

anti-IL-17A mAb for 2 days for ex-vivo for the evaluation of IL-6 production that is 

measured by ELISA (R & D Systems). Bar graph represents mean ± SEM of the data 

calculated as percent of IL-6 levels (as endogenous IL-6 production) in culture supernatants 

from BMSC alone with isotype control antibody. (F) The immunohistochemical analysis of 

bones was performed by staining them with anti-CD138 antibody. Arrows indicates presence 

bright CD138+cells. (G) Myeloma cells were co-cultured with BMSC in the presence of 

IL-17A with or without cell-signaling inhibitors (JAK2, STAT3, JNK, MEK, NFkB and PI3 

inhibitors) and IL-6 production was measured with standard ELISA. *P <0.05.
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Figure 3. Reduced osteoclast cell numbers by the antibody
Normal BM cells were cultured for three weeks in osteoclast supporting-medium (consisting 

25ng/ml of macrophage colony-stimulating factor and 25 ng/ml of receptor activator of 

nuclear factor kappa-B ligand) with isotype control antibody (as positive control) or anti-

IL-17A antibody and the tartrate-resistant acid phosphatage (TRAP+) multinucleated 

osteoclast cells were stained and cell-numbers were counted. Cells were cultured without 

osteoclast-supporting-medium as negative control. Images were obtained at 10 

magnifications with microscope (Eclipse TS100, Nikon instruments, Melville, NY, USA) 

with spot insight camera. TRAP-positive cells containing 5 or more nuclei/cell were 

enumerated using image J 1.45 software (NIH, Bethesda, MD, USA). A representative 

image was depicted (Figure A) and composite results from three experiments were shown in 

bar graph Figure B). Star indicates statistical signifies (p<0.05). There were no significant 

differences observed among three groups in cell-viability measured with alamor blue 

staining.
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Figure 4. Effect of AIN-457 humanized antibody on myeloma growth using three mouse models 
without tumor microenvironment
(A) SCID mice were injected with myeloma cells by sc route. Mice were injected in 2 

groups (N=3). One group was injected with myeloma cells with isotype control antibody; 

and second of mice injected with MM cells in anti-IL-17A mAb (10µg/ml). Tumor volume 

was measured at indicated time intervals from the MM cell-injections. Representative of two 

experiments is shown (p<0.05). (B) SCID mice were treated with isotype control antibody or 

anti-IL-17A mAb (10µg/ml) with weekly sc injections following subcutaneous MM cell-

injections (N=4). Tumor volumes (mm3) were measured at indicated time intervals. 

Representative of two experiments is shown. (C) Balb/C mice were injected with murine 

plasmacytoma cell-line and treated with isotype control antibody or murine anti-IL-17A 

mAb (10µg/ml) for a week with sc injections and tumor volumes were measured.
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Figure 5. Inhibition of tumor growth and prevention of bone resorption by AIN-457, IL-17A 
antibody in SCID human myeloma model
A) SCID mice were transplanted with human fetal bones, and after four weeks, myeloma 

cells were injected into the bones. One group was treated with vehicle with isotype control 

antibody and another group of mice were treated subcutaneously with AIN-457 (10µg/ml-/

mouse/injection) for four weeks following first detection of tumor by measuring human 

soluble IL-6R in the serum. Serum samples were collected weekly and level of humans 

IL-6R was measured by ELISA. Baseline values before treatment were not significantly 

different among groups. Representative of two experiments is shown (p<0.05). B) 
Treatment with anti IL-17A protects implanted bones from osteolysis. At the 

termination of the experiment, implanted human bones were excised and imaged by 

microcomputed tomography (microCT). Shown are the three-dimensional reconstructions of 

the bones and sections sliced longitudinally through the midpoint of each specimen injected 

with MM cells followed by treatment of the animal with either isotype control antibody 

(excessive bone resorption is seen) or anti IL-17A (no bone resorption is observed, 

trabecular bone is intact). The areas of increased osteoclastic bone resorption in the isotype 

control antibody-treated sample are indicated by arrowheads. Scale bar equals 1 mm3. Anti-
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IL-17A antibody reduced the bone resorption caused by myeloma cells. C) Significant 

differences in the measurements of bone resorption following anti-IL-17A mAb treatment.
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Figure 6. Analysis of IL-17A expression in myeloma cells
The MM patient samples were collected after informed consent in accordance with the 

Declaration of Helsinki and approved by the institutional review board (IRB) from Dana-

Farber Cancer Institute. Healthy donor bone marrow samples were obtained from AllCells 

(Emeryville, CA). MM primary cells were purified as described earlier5. RNA was isolated 

from MM cell-lines (A) and purified MM primary cells (B). Quantitative PCR was 

performed for IL-17A using 7900HT from Applied Biosystems. Representative 

experimental results from three different experiments were presented as relative expression 

value in comparison with GAPDH. For immuno-blot experiments, total cell lysates were 

prepared from MM cell-lines (C) and purified CD138+ MM primary cells (D), and separated 

by electrophoresis on 5% to 20% polyacrylamide gradient gels. Samples were probed with 

anti-sera to IL-17A and GAPDH as indicated. Representative immunoblot of three different 

experiments was shown. Myeloma cell lines were stained with isotype control antibody or 

anti–IL-17A antibody and analyzed by confocal microscopy. One representative cell line of 

4 experiments was shown at 640 magnifications (E).
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Figure 7. IL-17A knockdown decreases myeloma cell-number and their ability to produce IL-6 
in a co-culture with bone-marrow stromal cells
Myeloma cell-line (RPMI 8226) cells were used to transduce human IL-17A siRNA 

according to manufactures recommendations to determine the influence on myeloma cell-

proliferation and their ability to produce IL-6 when co-cultured with bone-marrow stromal 

cells. Cell lysates were analyzed using immuno-blots to assess decrease in intra-cellular 

protein expression of IL-17A (A). Cell-proliferation was analyzed by counting live cells 

following transfection. Representative study results of three different experiments were 

shown. MM cell-line (U266) was used to transduce human IL-17A shRNA according to 

manufactures recommendations to determine the influence on myeloma cell-expression and 

–proliferation (B). Representative study results of three different experiments were shown. 

Colony formation was evaluated using MethoCult agar plates following transfection with 

siRNA or shRNA (C). Representative study results of five different experiments were 

shown. IL-6 production was measured with standard ELISA following co-culturing 

myeloma cells with or without transfected MM cells with BMSC (D). Representative study 

results of three different experiments were shown.
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