6,155 research outputs found

    Characterizing the Larkin-Ovchinnikov-Fulde-Ferrel phase induced by the chromomagnetic instability

    Full text link
    We discuss possible destinations from the chromomagnetic instability in color superconductors with Fermi surface mismatch δμ\delta\mu. In the two-flavor superconducting (2SC) phase we calculate the effective potential for color vector potentials AαA_\alpha which are interpreted as the net momenta qq of pairing in the Larkin-Ovchinnikov-Fulde-Ferrel (LOFF) phase. When 1/2<δμ/Δ<11/\sqrt{2}<\delta\mu/\Delta<1 where Δ\Delta is the gap energy, the effective potential suggests that the instability leads to a LOFF-like state which is characterized by color-rotated phase oscillations with small qq. In the vicinity of δμ/Δ=1/2\delta\mu/\Delta=1/\sqrt{2} the magnitude of qq continuously increases from zero as the effective potential has negative larger curvature at vanishing AαA_\alpha that is the Meissner mass squared. In the gapless 2SC (g2SC) phase, in contrast, the effective potential has a minimum at gAα∼δμ∼ΔgA_\alpha\sim\delta\mu\sim\Delta even when the negative Meissner mass squared is infinitesimally small. Our results imply that the chromomagnetic instability found in the gapless phase drives the system toward the LOFF state with q∼δμq\sim\delta\mu.Comment: 6 pages, 3 figures; fatal typo about the conclusion corrected; reference adde

    Cr-doping effect on the orbital fluctuation of heavily doped Nd1-xSrxMnO3 (x ~ 0.625)

    Full text link
    We have investigated the Cr-doping effect of Nd0.375Sr0.625MnO3 near the phase boundary between the x2-y2 and 3z2-r2 orbital ordered states, where a ferromagnetic correlation and concomitant large magnetoresistance are observed owing to orbital fluctuation. Cr-doping steeply suppresses the ferromagnetic correlation and magnetoresistance in Nd0.375Sr0.625Mn1-yCryO3 with 0 < y < 0.05, while they reappear in 0.05 < y < 0.10. Such a reentrant behavior implies that a phase boundary is located at y = 0.05, or a phase crossover occurs across y = 0.05.Comment: 3 pages, 3 figures, to be published in Journal of Applied Physic

    Instability of a gapless color superconductor with respect to inhomogeneous fluctuations

    Full text link
    We systematically apply density functional theory to determine the kind of inhomogeneities that spontaneously develop in a homogeneous gapless phase of neutral two-flavor superfluid quark matter. We consider inhomogeneities in the quark and electron densities and in the phases and amplitude of the order parameter. These inhomogeneities are expected to lead the gapless phase to a BCS-normal coexisting phase, a Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) state with phase oscillations alone, and a LOFF state with amplitude oscillations. We find that which of them the homogeneous system tends towards depends sensitively on the chemical potential separation between up and down quarks and the gradient energies.Comment: 15 pages, 3 figures; corrected Eq. (36) and changed content associated with d quark clustering instabilit

    Polyakov loop and the color-flavor locked phase of Quantum Chromodynamics

    Get PDF
    We consider the Polyakov Nambu Jona Lasinio model with three massless quarks at high density and moderate temperature in the superconductive color flavor locking phase. We compute the critical temperature TcT_c as a function of the baryonic chemical potential for the phase transition from the superconductive state to the normal phase. We find that TcT_c is higher by a factor 1.5 -2 in comparison to the model containing no Polyakov loop. We also compute the specific heat CvC_v near the second order phase transition and we show that the inclusion of the Polyakov loop does not change the value of the critical exponent.Comment: 7 pages, 2 figures, RevTeX4 styl

    Views of the Chiral Magnetic Effect

    Full text link
    My personal views of the Chiral Magnetic Effect are presented, which starts with a story about how we came up with the electric-current formula and continues to unsettled subtleties in the formula. There are desirable features in the formula of the Chiral Magnetic Effect but some considerations would lead us to even more questions than elucidations. The interpretation of the produced current is indeed very non-trivial and it involves a lot of confusions that have not been resolved.Comment: 19 pages, no figure; typos corrected, references significantly updated, to appear in Lect. Notes Phys. "Strongly interacting matter in magnetic fields" (Springer), edited by D. Kharzeev, K. Landsteiner, A. Schmitt, H.-U. Ye

    Are You Tampering With My Data?

    Full text link
    We propose a novel approach towards adversarial attacks on neural networks (NN), focusing on tampering the data used for training instead of generating attacks on trained models. Our network-agnostic method creates a backdoor during training which can be exploited at test time to force a neural network to exhibit abnormal behaviour. We demonstrate on two widely used datasets (CIFAR-10 and SVHN) that a universal modification of just one pixel per image for all the images of a class in the training set is enough to corrupt the training procedure of several state-of-the-art deep neural networks causing the networks to misclassify any images to which the modification is applied. Our aim is to bring to the attention of the machine learning community, the possibility that even learning-based methods that are personally trained on public datasets can be subject to attacks by a skillful adversary.Comment: 18 page

    High energy cosmic-ray interactions with particles from the Sun

    Full text link
    Cosmic-ray protons with energies above 101610^{16} eV passing near the Sun may interact with photons emitted by the Sun and be excited to a Δ+\Delta^+ resonance. When the Δ+\Delta^+ decays, it produces pions which further decay to muons and photons which may be detected with terrestrial detectors. A flux of muons, photon pairs (from π0\pi^0 decay), or individual high-energy photons coming from near the Sun would be a rather striking signature, and the flux of these particles is a fairly direct measure of the flux of cosmic-ray nucleons, independent of the cosmic-ray composition. In a solid angle within 15∘15^\circ around the Sun the flux of photon pairs is about \SI{1.3e-3}{} particles/(km2⋅^2\cdotyr), while the flux of muons is about \SI{0.33e-3}{} particles/(km2⋅^2\cdotyr). This is beyond the reach of current detectors like the Telescope Array, Auger, KASCADE-Grande or IceCube. However, the muon flux might be detectable by next-generation air shower arrays or neutrino detectors such as ARIANNA or ARA. We discuss the experimental prospects in some detail. Other cosmic-ray interactions occuring close to the Sun are also briefly discussed.Comment: 8 pages, 11 figure

    Interior Point Decoding for Linear Vector Channels

    Full text link
    In this paper, a novel decoding algorithm for low-density parity-check (LDPC) codes based on convex optimization is presented. The decoding algorithm, called interior point decoding, is designed for linear vector channels. The linear vector channels include many practically important channels such as inter symbol interference channels and partial response channels. It is shown that the maximum likelihood decoding (MLD) rule for a linear vector channel can be relaxed to a convex optimization problem, which is called a relaxed MLD problem. The proposed decoding algorithm is based on a numerical optimization technique so called interior point method with barrier function. Approximate variations of the gradient descent and the Newton methods are used to solve the convex optimization problem. In a decoding process of the proposed algorithm, a search point always lies in the fundamental polytope defined based on a low-density parity-check matrix. Compared with a convectional joint message passing decoder, the proposed decoding algorithm achieves better BER performance with less complexity in the case of partial response channels in many cases.Comment: 18 pages, 17 figures, The paper has been submitted to IEEE Transaction on Information Theor

    Detection Prospects for Majorana Fermion WIMPless Dark Matter

    Full text link
    We consider both velocity-dependent and velocity-independent contributions to spin-dependent (SD) and spin-independent (SI) nuclear scattering (including one-loop corrections) of WIMPless dark matter, in the case where the dark matter candidate is a Majorana fermion. We find that spin-independent scattering arises only from the mixing of exotic squarks, or from velocity-dependent terms. Nevertheless (and contrary to the case of MSSM neutralino WIMPs), we find a class of models which cannot be detected through SI scattering, but can be detected at IceCube/DeepCore through SD scattering. We study the detection prospects for both SI and SD detection strategies for a large range of Majorana fermion WIMPless model parameters.Comment: 14 pages, 3 figures. v2: updated to match published versio
    • …
    corecore