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Abstract

We consider the Polyakov–Nambu–Jona-Lasinio model with three massless quarks at high density and moderate temperature in the supercon-
ductive color–flavor locking phase. We compute the critical temperature Tc as a function of the baryonic chemical potential for the phase transition
from the superconductive state to the normal phase. We find that Tc is higher by a factor 1.5–2 in comparison to the model containing no Polyakov
loop. We also compute the specific heat Cv near the second-order phase transition and we show that the inclusion of the Polyakov loop does not
change the value of the critical exponent.
© 2007 Elsevier B.V. Open access under CC BY license.
1. Introduction

At small hadronic densities and sufficiently high tempera-
ture chiral symmetry is restored and the nature of the chiral
phase transition can be investigated by various effective ap-
proaches. One of the most popular is the Nambu–Jona-Lasinio
(NJL) model [1], describing the chiral transition in terms of the
〈q̄q〉 order parameter. At high temperatures one also expects a
deconfinement transition [2]. Its nature is rather clear in pure
gauge theory, because, in absence of quarks, quantum chro-
modynamics at low temperature possesses a Z3 global sym-
metry, which is spontaneously broken at high temperature T .
The order parameter for this phase transition is the Polyakov
loop [3] whose expectation value vanishes in the disordered
low temperature phase and is different from zero in the high T

phase.
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The Polyakov loop is an SU(3)c matrix in color space given
by (β = T −1)

(1)L(x) =Pe−i
∫ β

0 dx4 A4(x,x4).

For uniform A4 one gets an order parameter that can be written
as follows in the Polyakov gauge

(2)Φ = 1

3
Tr eiβ(φ3λ3+φ8λ8);

for T → ∞ one has Φ = 1 and in the confined phase Φ = 0.
In presence of dynamical quarks there is no clear order para-

meter for the deconfinement transition because in this case the
Z3 center of the SU(3)c gauge group is not a good symmetry.
Though one cannot properly speak of a phase transition in this
case, the T -dependence of the Polyakov loop can nonetheless
be studied by numerical simulations and one still observes its
rise from low to high temperatures on the lattice.

An interesting and still debated [4] feature of these data is
that chiral symmetry breaking and the decrease of the Polyakov
loop occur at the same critical temperature [5]. It has been ar-
gued that a mixing between the effective models for chiral tran-
sition and the Polyakov loop dynamics might account for the
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approximate equality of these temperatures [6]. A step forward
has been obtained in Refs. [7] and [8], where the NJL model is
studied in presence of a uniform extended gauge field A4. Its
effect on dynamical quarks is obtained by identifying the para-
meters appearing in the Polyakov loop (2) with an imaginary
quark chemical potential (for related studies see also [9]).

This modified NJL model (called Polyakov–NJL = PNJL)
is characterized by a thermodynamical potential Ω comprising
two terms, ΩNJL and U(T ,φ). ΩNJL contains the NJL thermo-
dynamic potential modified by the inclusion of the imaginary
quark chemical potential; in the mean field approximation it
therefore depends on the chiral order parameter and on the
Polyakov loop Φ . U(T ,φ) depends only on Φ and T and its
parameters can be obtained by fitting pure gauge lattice QCD
results. The PNJL model still stands on a conjectural basis. We
do not analyze here its theoretical foundations. Nevertheless we
do attempt to determine some of its possible physical implica-
tions.

In [10] the PNJL model has been extended to high bary-
onic densities for the case of two flavors (u,d) by including
a quark chemical potential μ. At moderate μ and small T a
plausible model describing quark dynamics is the 2SC model
[11,12] characterized by condensation in the diquark antisym-
metric color channel and decoupling of the strange quark. The
two flavor approximation can only be valid at high, but not very
high, densities. At these densities u and d quark masses can
play a role, but their effect is included by considering also con-
densation in the q̄q channel.

The aim of the present Letter is to consider the case of higher
densities, where all the three light quarks can form color super-
conductive pairs. The favored phase for sufficiently high den-
sity is the color–flavor locking (CFL) state [13], characterized
by three massless quarks, qq condensation in spin 0, color and
flavor antisymmetric state (for reviews see [14]). This result was
obtained in an NJL model, where the gluon interaction is mim-
icked by a four fermion interaction and one works in the mean
field approximation. The dominance of the CFL phase can also
be proved in QCD by way of one-gluon exchange; however
this result is valid only at extreme densities (μ ∼ 108 GeV)
[15]. These densities are much larger than those presumably
existing in the core of compact stars, where color supercon-
ductivity might be found. For these latter densities perturbative
QCD is of little or no help. On the other hand, the standard non-
perturbative method, i.e., lattice QCD, is not applicable, as the
quark determinant is complex at μ �= 0 and Monte Carlo simu-
lations are not directly usable. Therefore the four fermion inter-
action remains as the only practical way to study the CFL phase.

Though in this approximation gluon interactions are de-
scribed by an effective four quark interactions, the Polyakov
order parameter can nevertheless play a role, similarly to what
happens for two flavors [10]. The study of this role is the aim
of this Letter, where we present a preliminary study of the
second-order phase transition around the critical line Tc(μ). We
will consider only the case of massless quarks, even though
finite mass effects could be included either as free parame-
ters or by considering condensation in both the diquark and
quark–antiquark channels [16]. The reason for this neglect is
that the inclusion of, say, the strange quark mass Ms consider-
ably complicates the analysis, because for Ms �= 0 one should
include electric and color chemical potentials to enforce elec-
tric and color neutrality. We will treat these effects, as well as
the extension to the gapless CFL (gCFL) phase [17], in a future
publication.

Since we neglect mass effects, the free energy depends only
on the order parameter Φ and the unique gap parameter Δ (the
role of the gap parameters due the symmetric color channels
will be discussed below). Moreover we are interested only in
the transition line between the CFL and the normal phase in the
T –μ plane. Therefore we can use a Ginzburg–Landau (GL) ex-
pansion near the critical line. This approximation is discussed
in Section 2. In Section 3 we verify that the transition is contin-
uous and compute the critical temperature as a function of the
quark chemical potential μ. Our result is that the critical tem-
perature Tc is higher by a factor 1.5–2 in comparison with the
treatment of CFL within the original NJL approximation. We
also evaluate the critical exponent β that fixes the relationship
between the gap parameter and the temperature near the phase
transition and we find that including the Polyakov loop does
not change the classical value β = 1/2. The discontinuity in the
specific heat at the second-order phase transition is also eval-
uated and a comparison of results obtained with and without
Polyakov loop is performed. Finally, some concluding remarks
are contained in Section 4.

2. Thermodynamics of the three flavor PNJL model

The model we study is described by the quark Lagrangian

(3)L= ψ̄
(
iDμγ μ + μγ0

)
ψ +LΔ.

In the above equation we have introduced the coupling of the
quarks to a background temporal gauge field Aμ = gδμ0A

a
μTa

coupled to the quarks via the covariant derivative Dμ = ∂μ −
iAμ; μ is the quark chemical potential. The term LΔ is respon-
sible for color condensation. It can be obtained in the mean field
approximation from a four fermion interaction term. In the CFL
model one has

(4)LΔ = −Δ

2

(
ψ

†
αiγ5ε

αβI εijICψ∗
βj + h.c.

) − 3Δ2

G
.

Eq. (4) describes the fact that in the ground state one has a non-
vanishing expectation value of the di-quark field operator

(5)
〈
ψαiψ

βj
〉 ∝ ΔεαβI εijI �= 0.

The constant G in Eq. (4) is the NJL four fermion coupling con-
stant. In Eq. (5) we have neglected the color symmetric channel
contribution, as one can prove that it becomes less and less im-
portant when one approaches the second-order phase transition.

Once the quark Lagrangian is specified, the mean field free
energy of the CFL quark matter is easily obtained by integration
over the fermion fields in the generating functional, namely

Ω = U(T ,φ) + 3Δ2

G

(6)− T

2
Tr

∑∫
dp

(2π)3
log

(
S−1(iωn,p)

T

)
,

n
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where ωn = πT (2n + 1) are the fermion Matsubara frequen-
cies, and S−1 is the inverse fermion propagator in the mean field
approximation, whose explicit form can be found in Ref. [17].
S−1 is in principle a 72 × 72 matrix in color, flavor, spin and
Nambu–Gorkov indices. In the high density limit the effect of
the antiparticles can be neglected; moreover, one can split the
left-handed and the right-handed quark contributions to the free
energy, since the quarks are massless and the condensation does
not mix quarks with opposite chirality. Thus S−1 is reduced to
an 18 × 18 matrix. It can be rearranged to a block diagonal
form, with a 6 × 6 matrix describing the propagation of ur , dg ,
sb quarks, and three 4 × 4 matrices describing the propagation
of dr , ug , and sr , ub , and sg , db quarks. This allows a straight-
forward extraction of the quasiparticle dispersion laws, much
in the same way as in the analogous evaluation contained in
[18], the difference being that there Δ1 = 0, Δ2 = Δ3 and here
Δ1 = Δ2 = Δ3 = Δ.

In Eq. (6) we have introduced the part of the thermody-
namic potential U(T ,φ) which describes the dynamics of the
Polyakov loops in absence of dynamical quarks. In principle
various forms can be used [7,10]; for definiteness we adopt the
form proposed in [10]

U(T ,φ) = T 4
{
−a(T )

2
Φ�Φ + b(T ) ln

[
1 − 6Φ�Φ

(7)

+ 4
(
Φ3 + Φ�3) − 3(Φ�Φ)2]},

where

a(T ) = a0 + a1

(
T0

T

)
+ a2

(
T0

T

)
,

(8)b(T ) = b3

(
T0

T

)3

.

The Polyakov loop Φ can be expressed in terms of one parame-
ter φ ≡ φ3, as the other parameter φ8 can always be absorbed
by a redefinition of φ3. It is given by

(9)Φ = Φ� = 1 + 2 cos(βφ)

3
.

Numerical values of the coefficients have been fitted in [10]
using lattice data [19]:

a0 = 3.51, a1 = −2.47, a2 = 15.2,

(10)b3 = −1.75,

together with the deconfinement temperature T0 = 270 MeV.
The use of a definite form for U(T ,φ) is not a limit of our com-
putation because other functional dependences produce similar
results as they are derived from the same lattice data set. The
NJL coupling G should in principle depend on Φ because the
four fermion coupling is induced by gluon dynamics. However
following [6] we will neglect this effect. In final results we will
trade G for the value Δ0 of the CFL gap at T = 0 using the
weak coupling formula [20]

(11)
3 = 6μ2

2
ln

2δ

1/3
.

G π 2 Δ0
In the above relation δ is an ultraviolet cutoff, introduced to en-
sure ultraviolet convergence of the loop integrals. By means of
Eq. (11) the coupling strength is represented by the parame-
ter Δ0.

Performing the summation over the Matsubara frequencies
in Eq. (6) one gets

Ω = U(T ,φ) + 3Δ2

G
− 2

9∑
i=1

∫
d3p

(2π)3

(
T ln

∣∣1 + e−βεj
∣∣

(12)

+ �(εj − p + μ) + T ln
∣∣1 + e−βε̃j

∣∣ + �(ε̃j − p − μ)
)
.

In Eq. (12) εj are the energies of quasiparticles and ε̃j are ob-
tained from εj by the substitution ξ = p − μ → p + μ. The
terms with ε̃j correspond to antiparticles. They are put here for
completeness but omitted in numerical evaluations. The dis-
persion laws for the nine quasiparticles can be derived by the
standard methods. Since the resulting expressions are cumber-
some and our study is limited to the critical line we present
here their expression only for small values of the gap parame-
ters, i.e., in the GL approximation. One obtains

ε1 = ε�
2 =

(
ξ + iφ + Δ2

2ξ

8ξ2 + φ2

4ξ2 + φ2
− i

Δ2φ

4ξ2 + φ2

)
,

ε3 = ξ

(
1 + 4Δ2

4ξ2 + φ2

)
,

ε4 = ε�
5 = ξ + iφ + Δ2

2ξ
,

ε6 = ε�
8 = ξ + iφ + Δ2

4ξ2 + φ2
(2ξ − iφ),

(13)ε7 = ε�
9 = ξ + Δ2

4ξ2 + φ2
(2ξ − iφ).

We have also computed the coefficients of the O(Δ4) term but
we do not report them here (they are needed to control that the
phase transition is continuous at Tc and to compute the gap, see
below).

The gap parameter Δ and the background gauge field φ at a
fixed temperature and chemical potential are obtained solving
the equations

(14)
∂Ω

∂φ
= 0,

(15)
∂Ω

∂Δ
= 0.

Near the critical temperature Tc one can expand Ω in Eq. (12)
as follows

(16)Ω(Δ,φ) − Ω(0, φ) ∼ α

2
Δ2 + β

4
Δ4.

The critical temperature Tc is obtained at a fixed μ as in the
usual BCS theory by solving the equation α(Tc) = 0, with α

given by

α = 6

G

[
1 + GT

2

3

μ2

π2
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×
∑
n

δ∫
−δ

dξ
[3 · (l2

0 − ξ2)2 + φ2 · (l2
0 + 3ξ2)]

(l2
0 − ξ2)[(l0 + ξ)2 + φ2][(l0 − ξ)2 + φ2]

∣∣∣∣
l0=iωn

]

(17)= 12μ2

π2

(
ln

2δ

∂21/3Δ0
+ 1

3

+δ∫
−δ

dξ f (ξ,φ)

)

and f defined by

f (ξ,φ) = − 2ξ

4ξ2 + φ2
tanh

βξ

2

(18)− 2� 4ξ − iφ

4ξ(2ξ − iφ)
tanh

β(ξ − iφ)

2
.

This expression for α is identical to the result obtained by (12)
using the dispersion laws (13) up to Δ2. On the other hand, the
coefficient β is given by

β = T
μ2

2π2

(19)

×
∑
n

δ∫
−δ

dξ
8Δ4 ·F(l0, ξ,Φ)

{(l2
0 − ξ2)[(l0 + ξ)2 + φ2][(l0 − ξ)2 + φ2]}2

∣∣∣∣
l0=iωn

,

where

F(l0, ξ,Φ) = 6l8
0 − l6

0 · (24ξ2 + 5φ2)
+ l4

0 · (36ξ4 + 21ξ2φ2 − 4φ4)
− l2

0 · (24ξ6 + 26ξ4φ2 − 24ξ2φ4 + φ6)
(20)+ ξ2 · (6ξ2 − φ2) · (ξ2 + φ2)2

.

The summation over Matsubara frequencies in the expression
of β can be performed analytically, but the final expression is
involved and we omit it for simplicity.

3. Numerical results

To get the critical temperature Tc we solve the equation
α(Tc) = 0 with α given by Eq. (17) and φ obtained by Eq. (14).
We have checked that the phase transition is of the second order
since β(Tc) > 0. It is well known that in the case φ = 0 one has
in the CFL phase Tc/Δ0 � 0.71, see for example [21]. On the
other hand, in the 2SC phase one has Tc/Δ0 � 0.57 as in ordi-
nary BCS superconductors. This difference is related to the fact
that in the CFL model one has eight gapped modes with gap Δ

and one mode with gap 2Δ.
The result of the numerical evaluation of Tc is shown in

Fig. 1, where we plot the ratio Tc/Δ0 with (solid line) and
without (dashed line) Polyakov loop, at the reference value
μ = 500 MeV. We notice that introducing self-consistently the
parameter φ implies a significant increase of the critical tem-
perature. This effect has been noticed also in the two flavor
model [10].

Next we turn to the behavior of the gap parameter Δ for
temperature close to Tc. We find

(21)
Δ(T )

Tc

= k(Δ0)

(
1 − T

Tc

)β

, T → T −
c ,
Fig. 1. Ratio Tc/Δ0 against Δ0 (MeV), with (solid line) and without (dashed
line) Polyakov loop, at μ = 500 MeV.

Fig. 2. Specific heat Cv (units: 107 MeV3) against T/Tc , with (solid line) and
without (dashed line) the Polyakov loop, for μ = 500 MeV and Δ0 = 25 MeV.

with β = 1/2. The value of the critical exponent is the same as
in BCS superconductors. However the presence of the Polyakov
loop affects the constant k in two ways. First, it gives a de-
pendence on Δ0 that is absent in the BCS and in the two
flavor–color superconductor. Second, it changes its numerical
values. For example for the 2SC case k � 3.1; in the present
case k = 1.7 and 2.2 for Δ0 = 40 and 100 MeV, respectively.

The knowledge of Δ(T ) near Tc allows to determine some
thermal properties of the model. For example we compute the
specific heat as a function of the temperature, near Tc. It is given
by

(22)Cv = −T
∂2Ω(Δ,φ)

∂T 2
.

We show the result of this calculation in Fig. 2, with
(solid line) and without (dashed line) Polyakov loop, for
μ = 500 MeV and Δ0 = 25 MeV (for other values of Δ0 we
find qualitatively similar results). We notice that including the
Polyakov loop slightly decreases the specific heat and increases
a bit its discontinuity around Tc.

4. Conclusions

In this Letter we have studied the effect of the inclusion of
the Polyakov loop on the NJL description of the CFL model.
We have restricted our attention to a temperature range close
to the critical temperature of the second-order phase transition.
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We have found that introducing the Polyakov loop significantly
increases the critical temperature, the effect being more im-
portant in the weak coupling regime. This increase may have
some phenomenological consequences, both for astrophysical
systems and for future experiments at GSI, if the proposed facil-
ity SIS100/200 [22] will be able to reach the hadronic densities
needed for color superconductivity. Needless to say, one has to
stress the heuristic use of the Polyakov loop when quarks are
dynamical. Already their presence destroys the center symme-
try of pure gauge QCD. More theoretical investigation will be
needed on the PNJL model to ascertain its possible regions of
validity. Nevertheless we felt that it is useful to investigate the
effect of the Polyakov loop in some portions of the QCD phase
diagrams where a direct QCD treatment is not available at the
present.

We have studied the behavior of the gap parameter Δ(T ) for
T ≈ Tc, showing that the Polyakov loop does not modify the
critical exponent β = 1/2, but only the pre-factor. In ordinary
superconductor the pre-factor does not depend on Δ0; on the
other hand, the presence of the Polyakov loop results in a pre-
factor dependent on the strength of the coupling.

A quantity of interest is the specific heat Cv since it can
be measured experimentally. At the second-order phase transi-
tion Cv is discontinuous, in the superconductive phase being
larger than in the normal phase. Although the effect of the
Polyakov loop is to decrease the absolute value of Cv , the dis-
continuity ΔCv with φ �= 0 is larger than the corresponding
value at φ = 0.

Further developments include the treatment of the strange
quark mass, as well as the study of the thermodynamics of the
CFL superconductor with Polyakov loop at lower temperatures.
While the effect of the Polyakov loop is not expected to modify
strongly the thermodynamics at small T , it is known that the
finite strange quark mass affects the phase diagram of QCD and
its role in the present model may be of interest as well.
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