33 research outputs found

    One-year follow-up for the therapeutic efficacy of pregabalin in patients with leg symptoms caused by lumbar spinal stenosis

    Get PDF
    AbstractBackground Pregabalin is a well-accepted treatment option for patients with neuropathic pain. However, the therapeutic efficacy of pregabalin for reducing the incidence of spinal surgery to treat leg symptoms in patients with lumbar spinal stenosis remains unknown. The purpose of this study was to analyze the therapeutic efficacy of pregabalin for reducing the incidence of spinal surgery for leg symptoms in patients with lumbar spinal stenosis during the first year of treatment.Methods Consecutive patients diagnosed with lumbar spinal stenosis at our hospital from January to June 2009 were treated with nonsteroidal anti-inflammatory drug monotherapy and formed the control group (n = 47; 22 males, 25 females). Patients diagnosed with lumbar spinal stenosis at our hospital between August 2010 and October 2011 were treated with a nonsteroidal anti-inflammatory drug and pregabalin combination therapy and formed the pregabalin group (n = 49; 27 males, 22 females). The proportions of patients who underwent spinal surgery during the first year of treatment were assessed and compared between the two groups using the Mann-Whitney U test. In addition, the periods in which patients decided to undergo spinal surgery were compared using the Kaplan-Meier method.Results Six patients (12.2 %) in the pregabalin group and 22 patients (46.8 %) in the control group underwent spinal surgery during the first year of treatment (P = 0.0035). The period in which patients decided to undergo spinal surgery was significantly delayed in the pregabalin group compared with the control group in those for whom spinal surgery was necessary (P = 0.0128).Conclusions Nonsteroidal anti-inflammatory drug and pregabalin combination therapy may result in a lower incidence of spinal surgery during the first year of treatment or a delayed period before undergoing spinal surgery if necessary compared with nonsteroidal anti-inflammatory drug monotherapy in patients with leg symptoms caused by lumbar spinal stenosis

    Enhancement of Vivid-based photo-activatable Gal4 transcription factor in mammalian cells

    Get PDF
    The Gal4/UAS system is a versatile tool to manipulate exogenous gene expression of cells spatially and temporally in many model organisms. Many variations of light-controllable Gal4/UAS system are now available, following the development of photo-activatable (PA) molecular switches and integration of these tools. However, many PA-Gal4 transcription factors have undesired background transcription activities even in dark conditions, and this severely attenuates reliable light-controlled gene expression. Therefore, it is important to develop reliable PA-Gal4 transcription factors with robust light-induced gene expression and limited background activity. By optimization of synthetic PA-Gal4 transcription factors, we have validated configurations of Gal4 DNA biding domain, transcription activation domain and blue light-dependent dimer formation molecule Vivid (VVD), and applied types of transcription activation domains to develop a new PA-Gal4 transcription factor we have named eGAV (enhanced Gal4-VVD transcription factor). Background activity of eGAV in dark conditions was significantly lower than that of hGAVPO, a commonly used PA-Gal4 transcription factor, and maximum light-induced gene expression levels were also improved. Light-controlled gene expression was verified in cultured HEK293T cells with plasmid-transient transfections, and in mouse EpH4 cells with lentivirus vector-mediated transduction. Furthermore, light-controlled eGAV-mediated transcription was confirmed in transfected neural stem cells and progenitors in developing and adult mouse brain and chick spinal cord, and in adult mouse hepatocytes, demonstrating that eGAV can be applied to a wide range of experimental systems and model organisms

    Efficacy and safety of micafungin in empiric and D-index-guided early antifungal therapy for febrile neutropenia ; A subgroup analysis of the CEDMIC trial

    Get PDF
    Objectives: The D-index is defined as the area over the neutrophil curve during neutropenia. The CEDMIC trial confirmed the noninferiority of D-index-guided early antifungal therapy (DET) using micafungin to empirical antifungal therapy (EAT). In this study, we evaluated the efficacy and safety of micafungin in these settings. Methods: From the CEDMIC trial, we extracted 67 and 113 patients who received micafungin in the DET and EAT groups, respectively. Treatment success was defined as the fulfilment of all components of a five-part composite end point. Fever resolution was evaluated at seven days after the completion of therapy. Results: The proportion of high-risk treatments including induction chemotherapy for acute leukemia and allogeneic hematopoietic stem cell transplantation was significantly higher in the DET group than in the EAT group (82.1% vs. 52.2%). The efficacy of micafungin was 68.7% (95%CI: 56.2–79.4) and 79.6% (71.0–86.6) in the DET and EAT groups, respectively. When we focused on high-risk treatments, the efficacy was 69.1% (55.2–80.9%) and 78.0% (65.3–87.7%), respectively (P = 0.30). There was no significant difference in any of the 5 components between the two groups. Conclusions: The efficacy of micafungin in patients undergoing high-risk treatment was not strongly impaired in DET compared to that in EAT

    Relaxin-like factor (RLF)/insulin-like peptide 3 (INSL3) is secreted from testicular Leydig cells as a monomeric protein comprising three domains B–C–A with full biological activity in boars

    Get PDF
    RLF (relaxin-like factor), also known as INSL3 (insulin-like peptide 3), is a novel member of the relaxin/insulin gene family that is expressed in testicular Leydig cells. Despite the implicated role of RLF/INSL3 in testis development, its native conformation remains unknown. In the present paper we demonstrate for the first time that boar testicular RLF/INSL3 is isolated as a monomeric structure with full biological activity. Using a series of chromatography steps, the native RLF/INSL3 was highly purified as a single peak in reverse-phase HPLC. MS/MS (tandem MS) analysis of the trypsinized sample provided 66% sequence coverage and revealed a distinct monomeric structure consisting of the B-, C- and A-domains deduced previously from the RLF/INSL3 cDNA. Moreover, the N-terminal peptide was four amino acid residues longer than predicted previously. MS analysis of the intact molecule and PMF (peptide mass fingerprinting) analysis at 100% sequence coverage confirmed this structure and indicated the existence of three site-specific disulfide bonds. RLF/INSL3 retained full bioactivity in HEK (human embryonic kidney)-293 cells expressing RXFP2 (relaxin/insulin-like family peptide receptor 2), the receptor for RLF/INSL3. Furthermore, RLF/INSL3 was found to be secreted from Leydig cells into testicular venous blood. Collectively, these results indicate that boar RLF/INSL3 is secreted from testicular Leydig cells as a B–C–A monomeric structure with full biological activity

    Rearrangement of Retinogeniculate Projection Patterns after Eye-Specific Segregation in Mice

    Get PDF
    It has been of interest whether and when the rearrangement of neuronal circuits can be induced after projection patterns are formed during development. Earlier studies using cats reported that the rearrangement of retinogeniculate projections could be induced even after eye-specific segregation has occurred, but detailed and quantitative characterization of this rearrangement has been lacking. Here we delineate the structural changes of retinogeniculate projections in the C57BL/6 mouse in response to monocular enucleation (ME) after eye-specific segregation. When ME was performed after eye-specific segregation, rearrangement of retinogeniculate axons in the dorsal lateral geniculate nucleus (dLGN) was observed within 5 days. Although this rearrangement was observed both along the dorsomedial-ventrolateral and outer-inner axes in the dLGN, it occurred more rapidly along the outer-inner axis. We also examined the critical period for this rearrangement and found that the rearrangement became almost absent by the beginning of the critical period for ocular dominance plasticity in the primary visual cortex. Taken together, our findings serve as a framework for the assessment of phenotypes of genetically altered mouse strains as well as provide insights into the mechanisms underlying the rearrangement of retinogeniculate projections

    Removal of 65Zn from Mouse Body by Isotopic Dilution and by DTPA Chelation

    No full text

    Self-powered ultraflexible photonic skin for continuous bio-signal detection via air-operation-stable polymer light-emitting diodes

    No full text
    Ultraflexible optical devices have been used extensively in next-generation wearable electronics owing to their excellent conformability to human skins. Long-term health monitoring also requires the integration of ultraflexible optical devices with an energy-harvesting power source; to make devices self-powered. However, system-level integration of ultraflexible optical sensors with power sources is challenging because of insufficient air operational stability of ultraflexible polymer light-emitting diodes. Here we develop an ultraflexible self-powered organic optical system for photoplethysmogram monitoring by combining air-operation-stable polymer light-emitting diodes, organic solar cells, and organic photodetectors. Adopting an inverted structure and a doped polyethylenimine ethoxylated layer, ultraflexible polymer light-emitting diodes retain 70% of the initial luminance even after 11.3 h of operation under air. Also, integrated optical sensors exhibit a high linearity with the light intensity exponent of 0.98 by polymer light-emitting diode. Such self-powered, ultraflexible photoplethysmogram sensors perform monitoring of blood pulse signals as 77 beats per minute.ISSN:2041-172

    大循環式潜水呼吸装置について / Practical Evaluation of a Diver Gas Recovery System up to 300 msw

    No full text
    corecore