285 research outputs found

    Plant Mitochondrial-Targeted Gene Delivery by Peptide/DNA Micelles Quantitatively Surface-Modified with Mitochondrial Targeting and Membrane-Penetrating Peptides

    Get PDF
    Plant mitochondria play essential roles in metabolism and respiration. Recently, there has been growing interest in mitochondrial transformation for developing crops with commercially valuable traits, such as resistance to environmental stress and shorter fallow periods. Mitochondrial targeting and cell membrane penetration functions are crucial for improving the gene delivery efficiency of mitochondrial transformation. Here, we developed a peptide-based carrier, referred to as Cytcox/KAibA-Mic, that contains multifunctional peptides for efficient transfection into plant mitochondria. We quantified the mitochondrial targeting and cell membrane-penetrating peptide modification rates to control their functions. The modification rates were easily determined from high-performance liquid chromatography chromatograms. Additionally, the gene carrier size remained constant even when the mitochondrial targeting peptide modification rate was altered. Using this gene carrier, we can quantitatively investigate the relationships between various peptide modifications and transfection efficiency and optimize the gene carrier conditions for mitochondrial transfection

    A transmembrane glycoprotein, gp38, is a novel marker for immature hepatic progenitor cells in fetal mouse livers

    Get PDF
    Previously, we clarified the surface antigen profiles of hepatic progenitor cells (HPCs) in fetal liver tissue as the CD49f+CD45−Thy1− cell fraction. However, these cells were a heterogeneous cell population containing various stages of differentiation. This study aimed to detect more immature HPCs, using a novel surface antigen, gp38. After the collagenase digestion of fetal livers harvested from E13.5 to E18.5 fetal mice, HPCs were obtained and divided into two subpopulations using flow cytometry: gp38-positive HPCs, and gp38-negative HPCs. Both types of HPCs were characterized by immunocytochemistry and RT-PCR. The proliferative activity was compared by BrdU incorporation and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTS) assay. Furthermore, the comprehensive gene expression was investigated by DNA microarray. Both types of HPCs expressed alpha-fetoprotein. However, the gp38-positive HPCs derived from E13.5 fetal livers did not express albumin or cytokeratin 19, while the gp38-negative HPCs did. DNA microarray revealed that some genes related to the Wnt signal pathway were up-regulated in the gp38-positive HPCs. Furthermore, Wnt3a had a proliferative effect on the gp38-positive HPCs. In conclusion, the gp38-positive HPCs derived from fetal liver tissue until E13.5 could therefore be candidates for hepatic stem cells in the fetal liver

    WoLF PSORT: protein localization predictor

    Get PDF
    WoLF PSORT is an extension of the PSORT II program for protein subcellular location prediction. WoLF PSORT converts protein amino acid sequences into numerical localization features; based on sorting signals, amino acid composition and functional motifs such as DNA-binding motifs. After conversion, a simple k-nearest neighbor classifier is used for prediction. Using html, the evidence for each prediction is shown in two ways: (i) a list of proteins of known localization with the most similar localization features to the query, and (ii) tables with detailed information about individual localization features. For convenience, sequence alignments of the query to similar proteins and links to UniProt and Gene Ontology are provided. Taken together, this information allows a user to understand the evidence (or lack thereof) behind the predictions made for particular proteins. WoLF PSORT is available at wolfpsort.or

    Rap1 translates chemokine signals to integrin activation, cell polarization, and motility across vascular endothelium under flow

    Get PDF
    Chemokines arrest circulating lymphocytes within the vasculature through the rapid up-regulation of leukocyte integrin adhesive activity, promoting subsequent lymphocyte transmigration. However, the key regulatory molecules regulating this process have remained elusive. Here, we demonstrate that Rap1 plays a pivotal role in chemokine-induced integrin activation and migration. Rap1 was activated by secondary lymphoid tissue chemokine (SLC; CCL21) and stromal-derived factor 1 (CXCL4) treatment in lymphocytes within seconds. Inhibition of Rap1 by Spa1, a Rap1-specific GTPase-activating protein, abrogated chemokine-stimulated lymphocyte rapid adhesion to endothelial cells under flow via intercellular adhesion molecule 1. Expression of a dominant active Rap1V12 in lymphocytes stimulated shear-resistant adhesion, robust cell migration on immobilized intercellular adhesion molecule 1 and vascular cell adhesion molecule 1, and transendothelial migration under flow. We also demonstrated that Rap1V12 expression in lymphocytes induced a polarized morphology, accompanied by the redistribution of CXCR4 and CD44 to the leading edge and uropod, respectively. Spa1 effectively suppressed this polarization after SLC treatment. This unique characteristic of Rap1 may control chemokine-induced lymphocyte extravasation

    Interferometric Observations of the T Tauri Stars in the MBM 12 Cloud

    Get PDF
    We have carried out a millimeter interferometric continuum survey toward 7 YSOs in the MBM 12 cloud. Thermal emissions associated with 2 YSOs were detected above the 3-σ\sigma level at 2.1 mm, and one also showed a 1.3 mm thermal emission. Another object was marginally detected at 2.1 mm. Spectral energy distributions of the YSOs are well fitted by a simple power-law disk model. Masses of the circumstellar disks are estimated to be an order of 0.05 M_{\sun}. The circumstellar disks in the MBM 12 cloud have properties in common with the disks in nearby star-forming regions, in terms of disk parameters such as a disk mass, as well as an infrared excess.Comment: 9 pages, 3 figures, accepted by ApJ Letter

    Effect of β-Cyclodextrin on Physicochemical Properties of an Ionic Liquid Electrolyte Composed of N-Methyl-N-Propylpyrrolidinium bis(trifluoromethylsulfonyl)amide

    Get PDF
    Ionic liquids (ILs) are promising electrolyte materials for developing next-generation rechargeable batteries. In order to improve their properties, several kinds of additives have been investigated. In this study, β-cyclodextrin (β-CD) was chosen as a new additive in IL electrolytes because it can form an inclusion complex with bis(trifluoromethylsulfonyl)amide (TFSA) anions. We prepared the composites by mixing N-methyl-N-propylpyrrolidinium bis(trifluoromethylsulfonyl)amide/LiTFSA and a given amount of triacetyl-β-cyclodextrin (Acβ-CD). The thermal behaviors and electrochemical properties of the composites were analyzed by several techniques. In addition, pulse field gradient NMR measurements were conducted to determine the self-diffusion coefficients of the component ions. The addition of Acβ-CD to the IL electrolytes results in the decrease in the conductivity value and the increase in the viscosity value. In contrast, the addition of Acβ-CD to the IL electrolytes induced an improvement in the anodic stability because of the formation of an inclusion complex between the Acβ-CD and TFSA anions. CDs are potential candidates as additives in IL electrolytes for electrochemical applications

    GABA-A and GABA-B Receptors in Filial Imprinting Linked With Opening and Closing of the Sensitive Period in Domestic Chicks (Gallus gallus domesticus)

    Get PDF
    Filial imprinting of domestic chicks has a well-defined sensitive (critical) period lasting in the laboratory from hatching to day 3. It is a typical model to investigate the molecular mechanisms underlying memory formation in early learning. We recently found that thyroid hormone 3,5,3′-triiodothyronine (T3) is a determinant of the sensitive period. Rapid increases in cerebral T3 levels are induced by imprinting training, rendering chicks imprintable. Furthermore, the administration of exogenous T3 makes chicks imprintable on days 4 or 6 even after the sensitive period has ended. However, how T3 affects neural transmission to enable imprinting remains mostly unknown. In this study, we demonstrate opposing roles for gamma-aminobutyric acid (GABA)-A and GABA-B receptors in imprinting downstream of T3. Quantitative reverse transcription polymerase chain reaction and immunoblotting showed that the GABA-A receptor expression increases gradually from days 1 to 5, whereas the GABA-B receptor expression gradually decreases. We examined whether neurons in the intermediate medial mesopallium (IMM), the brain region responsible for imprinting, express both types of GABA receptors. Immunostaining showed that morphologically identified putative projection neurons express both GABA-A and GABA-B receptors, suggesting that those GABA receptors interact with each other in these cells to modulate the IMM outputs. The roles of GABA-A and GABA-B receptors were investigated using various agonists and antagonists. Our results show that GABA-B receptor antagonists suppressed imprinting on day 1, while its agonists made day 4 chicks imprintable without administration of exogenous T3. By contrast, GABA-A receptor agonists suppressed imprinting on day 1, while its antagonists induced imprintability on day 4 without exogenous T3. Furthermore, both GABA-A receptor agonists and GABA-B receptor antagonists suppressed T3-induced imprintability on day 4 after the sensitive period has ended. Our data from these pharmacological experiments indicate that GABA-B receptors facilitate imprinting downstream of T3 by initiating the sensitive period, while the GABA-A receptor contributes to the termination of the sensitive period. In conclusion, we propose that opposing roles of GABA-A and GABA-B receptors in the brain during development determine the induction and termination of the sensitive period

    The mERG1a channel modulates skeletal muscle MuRF1, but not MAFbx, expression.

    Get PDF
    INTRODUCTION: We investigated the mechanism by which the MERG1a K+ channel increases ubiquitin proteasome proteolysis (UPP). METHODS: Hindlimb suspension and electro-transfer of Merg1a cDNA into mouse gastrocnemius muscles induced atrophy. RESULTS: Atrophic gastrocnemius muscles of hindlimb-suspended mice express Merg1a, Murf1, and Mafbx genes. Electrotransfer of Merg1a significantly decreases muscle fiber size (12.6%) and increases UPP E3 ligase Murf1 mRNA (2.1-fold) and protein (23.7%), but does not affect Mafbx E3 ligase expression. Neither Merg1a-induced decreased fiber size nor Merg1a-induced increased Murf1 expression is curtailed significantly by coexpression of inactive HR-Foxo3a, a gene encoding a transcription factor known to induce Mafbx expression. CONCLUSIONS: The MERG1a K+ channel significantly increases expression of Murf1, but not Mafbx. We explored this expression pattern by expressing inactive Foxo3a and showing that it is not involved in MERG1a-mediated expression of Murf1. These findings suggest that MERG1a may not modulate Murf1 expression through the AKT/FOXO pathway

    Podoplanin promotes progression of MPM

    Get PDF
    Malignant pleural mesothelioma (MPM) is characterized by dissemination and aggressive growth in the thoracic cavity. Podoplanin (PDPN) is an established diagnostic marker for MPM, but the function of PDPN in MPM is not fully understood. The purpose of this study was to determine the pathogenetic function of PDPN in MPM. Forty-seven of 52 tumors (90%) from Japanese patients with MPM and 3/6 (50%) MPM cell lines tested positive for PDPN. Knocking down PDPN in PDPN-high expressing MPM cells resulted in decreased cell motility. In contrast, overexpression of PDPN in PDPN-low expressing MPM cells enhanced cell motility. PDPN stimulated motility was mediated by activation of the RhoA/ROCK pathway. Moreover, knocking down PDPN with short hairpin (sh) RNA in PDPN-high expressing MPM cells resulted in decreased development of a thoracic tumor in mice with severe combined immune deficiency (SCID). In sharp contrast, transfection of PDPN in PDPN-low expressing MPM cells resulted in an increase in the number of Ki-67-positive proliferating tumor cells and it promoted progression of a thoracic tumor in SCID mice. Interestingly, PDPN promoted focus formation in vitro, and a low level of E-cadherin expression and YAP1 activation was observed in PDPN-high MPM tumors. These findings indicate that PDPN is a diagnostic marker as well as a pathogenetic regulator that promotes MPM progression by increasing cell motility and inducing focus formation. Therefore, PDPN might be a pathogenetic determinant of MPM dissemination and aggressive growth and may thus be an ideal therapeutic target
    corecore