2,584 research outputs found

    TiO2‐Based Photocatalysis at the Interface with Biology and Biomedicine

    Get PDF
    This is the peer reviewed version of the following article: M. Tomás-Gamasa, J. L. Mascareñas, ChemBioChem 2020, 21, 294, which has been published in final form at https://doi.org/10.1002/cbic.201900229. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived VersionsThe conversion of sunlight into chemical energy by using photosynthetic machinery is at the heart of nature and life. Scientists have also learned to use light energy to promote a great variety of chemical reactions, most of which are based on redox processes involving electron‐transfer steps. Indeed, the area of photoredox catalysis has recently emerged as one of the hottest fields in synthetic chemistry. Many of the photoredox reactions discovered so far take place in homogeneous phases, and rely on the use of soluble photoresponsive catalysts. However, in recent years, there have been many advances in the area of heterogeneous photocatalysis, most of which are based on the use of semiconductor materials, such as TiO2, as a key photocatalytic system. These technologies have found different applications, especially in the field of sustainable chemistry and therapy. Herein, some of these applications, and the potential of TiO2‐based photocatalysts in biology and biomedicine, are reviewedThis work has received financial support from the Spanish Government (SAF2016‐76689‐R, Orfeo‐cinqa network CTQ2016‐81797‐REDC); the Consellería de Cultura, Educación e Ordenación Universitaria (2015‐CP082, ED431C 2017/19); the Centro Singular de Investigación de Galicia accreditation 2016–2019, ED431G/09); the European Union (European Regional Development Fund‐ERDF); and the European Research Council (Advanced Grant No. 340055). M.T.G. thanks the Ministerio de Economía y Competitividad for the Juan de la Cierva‐Incorporación (IJCI‐2015‐23210)S

    Intrinsic intermediate gap states of TiO₂ materials and their roles in charge carrier kinetics

    Get PDF
    Titanium dioxide (TiO 2 ) is regarded as an important prototype photocatalytic material for several decades. The charge carrier kinetics determines the photocatalytic properties of TiO 2 materials; this is found to be greatly dependent on electronic structures. It has been revealed that the intrinsic intermediate gap states (intrinsic GSs) play a significant role in charge carrier kinetics that drive the photocatalytic processes of TiO 2 materials, which are not well summarized until now. Motivated by this thought, the purpose of this review focuses on physiochemical science of the intrinsic GSs of TiO 2 materials and their important role in charge carrier kinetics. We first give a summary on the chemical resources of the intrinsic GSs in TiO 2 and their physiochemical nature. Their general energy distribution, charge carrier population, and the associated thermodynamic properties are also elaborated from an overall viewpoint. We further carefully summarize and compare the experimental studies on the energy and the density distribution of the intrinsic GSs and discuss the associated chemical resources and charge carrier localizations. Trapping is the dominant function of intrinsic GSs in the charge carrier kinetics of TiO 2 materials. The significant effect of trapping on the transport, recombination, and interfacial transfer of charge carriers are also comprehensive summarized. Furthermore, the effects of charge carrier kinetics on photocatalytic performances are also discussed to some extents. Because of the importance of intrinsic GSs in modulating charge carrier kinetics, it is expected to increase the photocatalytic activity by engineering the intrinsic GSs, not only for TiO 2 materials, but also for the other semiconductor photocatalysts

    AKARI-CAS --- Online Service for AKARI All-Sky Catalogues

    Full text link
    The AKARI All-Sky Catalogues are an important infrared astronomical database for next-generation astronomy that take over the IRAS catalog. We have developed an online service, AKARI Catalogue Archive Server (AKARI-CAS), for astronomers. The service includes useful and attractive search tools and visual tools. One of the new features of AKARI-CAS is cached SIMBAD/NED entries, which can match AKARI catalogs with other catalogs stored in SIMBAD or NED. To allow advanced queries to the databases, direct input of SQL is also supported. In those queries, fast dynamic cross-identification between registered catalogs is a remarkable feature. In addition, multiwavelength quick-look images are displayed in the visualization tools, which will increase the value of the service. In the construction of our service, we considered a wide variety of astronomers' requirements. As a result of our discussion, we concluded that supporting users' SQL submissions is the best solution for the requirements. Therefore, we implemented an RDBMS layer so that it covered important facilities including the whole processing of tables. We found that PostgreSQL is the best open-source RDBMS products for such purpose, and we wrote codes for both simple and advanced searches into the SQL stored functions. To implement such stored functions for fast radial search and cross-identification with minimum cost, we applied a simple technique that is not based on dividing celestial sphere such as HTM or HEALPix. In contrast, the Web application layer became compact, and was written in simple procedural PHP codes. In total, our system realizes cost-effective maintenance and enhancements.Comment: Yamauchi, C. et al. 2011, PASP..123..852

    On the optical properties of Ag^{+15} ion-beam irradiated TiO_{2} and SnO_{2} thin films

    Full text link
    The effects of 200-MeV Ag^{+15} ion irradiation on the optical properties of TiO_{2} and SnO_{2} thin films prepared by using the RF magnetron sputtering technique were investigated. These films were characterized by using UV-vis spectroscopy, and with increasing irradiation fluence, the transmittance for the TiO_{2} films was observed to increase systematically while that for SnO_{2} was observed to decrease. Absorption spectra of the irradiated samples showed minor changes in the indirect bandgap from 3.44 to 3.59 eV with increasing irradiation fluence for TiO_{2} while significant changes in the direct bandgap from 3.92 to 3.6 eV were observed for SnO_{2}. The observed modifications in the optical properties of both the TiO_{2} and the SnO_{2} systems with irradiation can be attributed to controlled structural disorder/defects in the system.Comment: 6 pages, ICAMD-201

    Genomic Heterogeneity in a Natural Archaeal Population Suggests a Model of tRNA Gene Disruption

    Get PDF
    Understanding the mechanistic basis of the disruption of tRNA genes, as manifested in the intron-containing and split tRNAs found in Archaea, will provide considerable insight into the evolution of the tRNA molecule. However, the evolutionary processes underlying these disruptions have not yet been identified. Previously, a composite genome of the deep-branching archaeon Caldiarchaeum subterraneum was reconstructed from a community genomic library prepared from a C. subterraneum–dominated microbial mat. Here, exploration of tRNA genes from the library reveals that there are at least three types of heterogeneity at the tRNAThr(GGU) gene locus in the Caldiarchaeum population. All three involve intronic gain and splitting of the tRNA gene. Of two fosmid clones found that encode tRNAThr(GGU), one (tRNAThr-I) contains a single intron, whereas another (tRNAThr-II) contains two introns. Notably, in the clone possessing tRNAThr-II, a 5′ fragment of the tRNAThr-I (tRNAThr-F) gene was observed 1.8-kb upstream of tRNAThr-II. The composite genome contains both tRNAThr-II and tRNAThr-F, although the loci are >500 kb apart. Given that the 1.8-kb sequence flanked by tRNAThr-F and tRNAThr-II is predicted to encode a DNA recombinase and occurs in six regions of the composite genome, it may be a transposable element. Furthermore, its dinucleotide composition is most similar to that of the pNOB8-type plasmid, which is known to integrate into archaeal tRNA genes. Based on these results, we propose that the gain of the tRNA intron and the scattering of the tRNA fragment occurred within a short time frame via the integration and recombination of a mobile genetic element

    Robustness of a local Fermi Liquid against Ferromagnetism and Phase Separation

    Full text link
    We study the properties of Fermi Liquids with the microscopic constraint of a local self-energy. In this case the forward scattering sum-rule imposes strong limitations on the Fermi-Liquid parameters, which rule out any Pomeranchek instabilities. For both attractive and repulsive interactions, ferromagnetism and phase separation are suppressed. Superconductivity is possible in an s-wave channel only. We also study the approach to the metal-insulator transition, and find a Wilson ratio approaching 2. This ratio and other properties of Sr_{1-x}La_xTiO_3 are all consistent with the local Fermi Liquid scenario.Comment: 4 pages (twocolumn format), can compile with or without epsf.sty latex style file -- Postscript files: fig1.ps and fig2.p

    Growth behavior of titanium dioxide thin films at different precursor temperatures

    Get PDF
    The hydrophilic TiO2 films were successfully deposited on slide glass substrates using titanium tetraisopropoxide as a single precursor without carriers or bubbling gases by a metal-organic chemical vapor deposition method. The TiO2 films were employed by scanning electron microscopy, Fourier transform infrared spectrometry, UV-Visible [UV-Vis] spectroscopy, X-ray diffraction, contact angle measurement, and atomic force microscopy. The temperature of the substrate was 500°C, and the temperatures of the precursor were kept at 75°C (sample A) and 60°C (sample B) during the TiO2 film growth. The TiO2 films were characterized by contact angle measurement and UV-Vis spectroscopy. Sample B has a very low contact angle of almost zero due to a superhydrophilic TiO2 surface, and transmittance is 76.85% at the range of 400 to 700 nm, so this condition is very optimal for hydrophilic TiO2 film deposition. However, when the temperature of the precursor is lower than 50°C or higher than 75°C, TiO2 could not be deposited on the substrate and a cloudy TiO2 film was formed due to the increase of surface roughness, respectively
    corecore