828 research outputs found

    Robust Consensus of Second-Order Heterogeneous Multi-Agent Systems via Dynamic Interaction

    Get PDF
    A consensus problem is proposed for second-order multi-agent systems with heterogeneous mass distribution. The motivation of this work is mainly related to spacecraft attitude coordinated control, in which gyroless configuration is considered, to avoid drift errors and design of estimation filters. The considered spacecraft includes flexible modes and coupling between the rigid and flexible dynamics. Dynamic interaction between the agents is considered. Moreover, the achievement of the consensus and robust stabilization are shown for coordinated heterogeneous multi-agent systems, for undirected and connected graph topology. Finally, the effectiveness of the proposed controller is shown for a precise pointing mission of the Crab Nebula

    First Order Semiclassical Thermal String in the AdS Spacetime

    Get PDF
    We formulate the finite temperature theory for the free thermal excitations of the bosonic string in the anti-de Sitter (AdS) spacetime in the Thermo Field Dynamics (TFD) approach. The spacetime metric is treated exactly while the string and the thermal reservoir are semiclassically quantized at the first order perturbation theory with respect to the dimensionless parameter \epsilon = \a ' H^{-2}. In the conformal D=2+1D=2+1 black-hole AdS background the quantization is exact. The method can be extended to the arbitrary AdS spacetime only in the first order perturbation. This approximation is taken in the center of mass reference frame and it is justified by the fact that at the first order the string dynamics is determined only by the interaction between the {\em free} string oscillation modes and the {\em exact} background. The first order thermal string is obtained by thermalization of the T=0T = 0 system carried on by the TFD Bogoliubov operator. We determine the free thermal string states and compute the local entropy and free energy in the center of mass reference frame.Comment: Minor typos corrected. Two references added. LATeX file, 19 page

    Bosonic D-branes at finite temperature with an external field

    Get PDF
    Bosonic boundary states at finite temperature are constructed as solutions of boundary conditions at T0T\neq 0 for bosonic open strings with a constant gauge field FabF_{ab} coupled to the boundary. The construction is done in the framework of thermo field dynamics where a thermal Bogoliubov transformation maps states and operators to finite temperature. Boundary states are given in terms of states from the direct product space between the Fock space of the closed string and another identical copy of it. By analogy with zero temperature, the boundary states heve the interpretation of DpDp-brane at finite temperature. The boundary conditions admit two different solutions. The entropy of the closed string in a DpDp-brane state is computed and analysed. It is interpreted as the entropy of the DpDp-brane at finite temperature.Comment: 21 pages, Latex, revised version with minor corrections and references added, to be published in Phys. Rev.

    Systematic study of autocorrelation time in pure SU(3) lattice gauge theory

    Full text link
    Results of our autocorrelation measurement performed on Fujitsu AP1000 are reported. We analyze (i) typical autocorrelation time, (ii) optimal mixing ratio between overrelaxation and pseudo-heatbath and (iii) critical behavior of autocorrelation time around cross-over region with high statistic in wide range of β\beta for pure SU(3) lattice gauge theory on 848^4, 16416^4 and 32432^4 lattices. For the mixing ratio K, small value (3-7) looks optimal in the confined region, and reduces the integrated autocorrelation time by a factor 2-4 compared to the pseudo-heatbath. On the other hand in the deconfined phase, correlation times are short, and overrelaxation does not seem to matter For a fixed value of K(=9 in this paper), the dynamical exponent of overrelaxation is consistent with 2 Autocorrelation measurement of the topological charge on 323×6432^3 \times 64 lattice at β\beta = 6.0 is also briefly mentioned.Comment: 3 pages of A4 format including 7-figure

    Autocorrelation in Updating Pure SU(3) Lattice Gauge Theory by the use of Overrelaxed Algorithms

    Full text link
    We measure the sweep-to-sweep autocorrelations of blocked loops below and above the deconfinement transition for SU(3) on a 16416^4 lattice using 20000-140000 Monte-Carlo updating sweeps. A divergence of the autocorrelation time toward the critical β\beta is seen at high blocking levels. The peak is near β\beta = 6.33 where we observe 440 ±\pm 210 for the autocorrelation time of 1×11\times 1 Wilson loop on 242^4 blocked lattice. The mixing of 7 Brown-Woch overrelaxation steps followed by one pseudo-heat-bath step appears optimal to reduce the autocorrelation time below the critical β\beta. Above the critical β\beta, however, no clear difference between these two algorithms can be seen and the system decorrelates rather fast.Comment: 4 pages of A4 format including 6-figure

    Non-perturbative determination of anisotropy coefficients in lattice gauge theories

    Get PDF
    We propose a new non-perturbative method to compute derivatives of gauge coupling constants with respect to anisotropic lattice spacings (anisotropy coefficients), which are required in an evaluation of thermodynamic quantities from numerical simulations on the lattice. Our method is based on a precise measurement of the finite temperature deconfining transition curve in the lattice coupling parameter space extended to anisotropic lattices by applying the spectral density method. We test the method for the cases of SU(2) and SU(3) gauge theories at the deconfining transition point on lattices with the lattice size in the time direction Nt=4N_t=4 -- 6. In both cases, there is a clear discrepancy between our results and perturbative values. A longstanding problem, when one uses the perturbative anisotropy coefficients, is a non-vanishing pressure gap at the deconfining transition point in the SU(3) gauge theory. Using our non-perturbative anisotropy coefficients, we find that this problem is completely resolved: we obtain Δp/T4=0.001(15)\Delta p/T^4 = 0.001(15) and 0.003(17)-0.003(17) on Nt=4N_t=4 and 6 lattices, respectively.Comment: 24pages,7figures,5table
    corecore