114 research outputs found

    近赤外線分光法を用いた局所酸素飽和度による熱傷深度測定の検討

    Get PDF
    The burn severity depends on the wound depth and area affected. Hitherto burn depth has been judged mainly by visual observation, although concerns have been raised about its validity. The regional tissue blood flow (rTBF) measured by laser Doppler imaging (LDI) in damaged tissue correlates with the depth. However, very few reports are available on the significance of the regional tissue oxygen saturation (rSO2) as an indicator of burn depth. We investigated whether rSO2 by Near-infrared spectroscopy (NIRS) in burn injuries correlates with rTBF by LDI, which would facilitate quantification of the severity of the tissue damage. Methods: We measured rTBF and rSO2 in 50 lesions from 14 patients of burn injury within 24 hours after injury. The correlation between rTBF and rSO2 was evaluated by Spearman rank correlation analysis. Results: The rSO2 (%; range, 52-82) by NIRS and the rTBF (perfusion unit; range, 61-704) by LDI in burn lesions were positively correlated (r=0.755, p<0.001). This statistically positive correlation still remained significant (r=0.678, p<0.001) after the rSO2 values were standardized. Conclusion: This study suggests that NIRS determination of rSO2 in burn injuries shows promise as a reliable and quick method to estimate the depth of burn lesion.博士(医学)・乙第1343号・平成26年7月22日© 2014 Seki Tadahiko et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Discovery of a gene cluster for the biosynthesis of novel cyclic peptide compound, KK-1, in Curvularia clavata

    Get PDF
    KK-1, a cyclic depsipeptide with 10 residues produced by a filamentous fungus Curvularia clavata BAUA-2787, is a promising pesticide active compound with high activity against many plant pathogens, especially Botrytis cinerea. As a first step toward the future mass production of KK-1 through synthetic biological approaches, we aimed to identify the genes responsible for the KK-1 biosynthesis. To achieve this, we conducted whole genome sequencing and transcriptome analysis of C. clavata BAUA-2787 to predict the KK-1 biosynthetic gene cluster. We then generated the overexpression and deletion mutants for each cluster gene using our originally developed transformation system for this fungus, and analyzed the KK-1 production and the cluster gene expression levels to confirm their involvement in KK-1 biosynthesis. As a result of these, a region of approximately 71 kb was found, containing 10 open reading frames, which were co-induced during KK-1 production, as a biosynthetic gene cluster. These include kk1B, which encodes nonribosomal peptide synthetase with a domain structure that is consistent with the structural features of KK-1, and kk1F, which encodes a transcription factor. The overexpression of kk1F increased the expression of the entire cluster genes and, consequently, improved KK-1 production, whereas its deletion decreased the expression of the entire cluster genes and almost eliminated KK-1 production, demonstrating that the protein encoded by kk1F regulates the expressions of the other nine cluster genes cooperatively as the pathway-specific transcription factor. Furthermore, the deletion of each cluster gene caused a reduction in KK-1 productivity, indicating that each gene is involved in KK-1 production. The genes kk1A, kk1D, kk1H, and kk1I, which showed a significant decrease in KK-1 productivity due to deletion, were presumed to be directly involved in KK-1 structure formation, including the biosynthesis of the constituent residues. kk1C, kk1E, kk1G, and kk1J, which maintained a certain level of KK-1 productivity despite deletion, were possibly involved in promoting or assisting KK-1 production, such as extracellular transportation and the removal of aberrant units incorporated into the peptide chain

    Impact of Anatomical Resection for Hepatocellular Carcinoma With Microportal Invasion (vp1): A Multi-institutional Study by the Kyushu Study Group of Liver Surgery

    Get PDF
    Objective: The aim of the present study was to evaluate the value of anatomical resectionfor HCC with micro-portal vascular invasion (vp1) between 2000 and 2010. Summaryof Background: Vascular invasion has been reported as a prognostic factor of liverresection for hepatocellular carcinoma (HCC). Anatomical resection for HCC has resulted in optimum outcomes of eradicating intrahepatic micrometastases through the portal vein, but opposite results have also been reported. Methods: A clinical chart review was performed for 546 HCC patients with vp1. We retrospectively evaluated the recurrence-free survival (RFS) between anatomical (AR)and non-anatomical resection (NAR). The site of recurrence was also compared between these groups. The influence of AR on the overall survival (OS) and RFS rates was analyzed in patients selected by propensity score matching, and the prognostic factors were identified.Results: A total of 546 patients were enrolled, including 422 in the AR group and 124 in the NAR group. There was no difference in the 5-year OS and RFS rates between the two groups. Local recurrence was significantly more frequent in the NAR group than in the AR group. In a multivariate analysis, hepatitis C (HCV), PIVKAII ?380 mAU/ml, tumor diameter ?5 cm and ?70 years of age were significant predictors of a poor RFS after liverresection. There were no significant differences in the OS or RFS between the AR and NAR groups by a propensity score-matched analysis. Conclusion: Although local recurrence around the resection site was suppressed by AR, AR for HCC with vp1 did not influence the RFS or OS rates after hepatectomy in the modern era

    ADAMTS13 gene deletion enhances plasma high-mobility group box1 elevation and neuroinflammation in brain ischemia-reperfusion injury

    Get PDF
    Highly adhesive glycoprotein von Willebrand factor (VWF) multimer induces platelet aggregation and leukocyte tethering or extravasation on the injured vascular wall, contributing to microvascular plugging and inflammation in brain ischemia-reperfusion. A disintegrin and metalloproteinase with thrombospondin type-1 motifs 13 (ADAMTS13) cleaves the VWF multimer strand and reduces its prothrombotic and proinflammatory functions. Although ADAMTS13 deficiency is known to amplify post-ischemic cerebral hypoperfusion, there is no report available on the effect of ADAMTS13 on inflammation after brain ischemia. We investigated if ADAMTS13 deficiency intensifies the increase of extracellular HMGB1, a hallmark of post-stroke inflammation, and exacerbates brain injury after ischemia-reperfusion. ADAMTS13 gene knockout (KO) and wild-type (WT) mice were subjected to 30-min middle cerebral artery occlusion (MCAO) and 23.5-h reperfusion under continuous monitoring of regional cerebral blood flow (rCBF). The infarct volume, plasma high-mobility group box1 (HMGB1) level, and immunoreactivity of the ischemic cerebral cortical tissue (double immunofluorescent labeling) against HMGB1/NeuN (neuron-specific nuclear protein) or HMGB1/MPO (myeloperoxidase) were estimated 24h after MCAO. ADAMTS13KO mice had larger brain infarcts compared with WT 24h after MCAO (p<0.05). The rCBF during reperfusion decreased more in ADAMTS13KO mice. The plasma HMGB1 increased more in ADAMTS13KO mice than in WT after ischemia-reperfusion (p<0.05). Brain ischemia induced more prominent activation of inflammatory cells co-expressing HMGB1 and MPO and more marked neuronal death in the cortical ischemic penumbra of ADAMTS13KO mice. ADAMTS13 deficiency may enhance systemic and brain inflammation associated with HMGB1 neurotoxicity, and aggravate brain damage in mice after brief focal ischemia. We hypothesize that ADAMTS13 protects brain from ischemia-reperfusion injury by regulating VWF-dependent inflammation as well as microvascular pluggin

    Analysis of HCV genotypes from blood donors shows three new HCV type 6 subgroups exist in Myanmar.

    Get PDF
    The prevalence of hepatitis C virus (HCV) genotypes in Myanmar in comparison with the rest of Southeast Asia is not well known. Serum samples were obtained from 201 HCV antibody-positive volunteer blood donors in and around the Myanmar city of Yangon. Of these, the antibody titers of 101 samples were checked by serial dilution using HCV antibody PA test II and Terasaki microplate as a low-cost method. To compare antibody titers by this method and RNA identification, we also checked HCV-RNA using the Amplicor 2.0 test. Most high-titer groups were positive for HCV-RNA. Of the 201 samples, 110 were successfully polymerase chain reaction (PCR) amplified. Among them, 35 (31.8%) were of genotype 1, 52 (47.3%) were of genotype 3, and 23 (20.9%) were of type 6 variants, and phylogenetic analysis of these type 6 variants revealed that 3 new type 6 subgroups exist in Myanmar. We named the subgroups M6-1, M6-2, and M6-3. M6-1 and M6-2 were relatively close to types 8 and 9, respectively. M6-3, though only found in one sample, was a brand-new subgroup. These subtypes were not seen in Vietnam, where type 6 group variants are widely spread. These findings may be useful for analyzing how and when these subgroups were formed
    corecore