176 research outputs found

    Local viscosity change in water near a solid-liquid interface and its extraction by means of molecular rotational diffusion : A molecular dynamics study

    Get PDF
    The relation between the rotational diffusion (RD) coefficient of water molecules and viscosity, that theoretically are inversely proportional to each other, was examined by using molecular dynamics simulations. In a homogeneous bulk liquid system, both the viscosity calculated from the virial theorem and the experimental one correlated well with the inverse of water RD coefficient at various temperatures. In a heterogeneous system of water between solid walls with different solid-liquid interaction strength, the viscosity distribution was similar to the distribution of the RD coefficient inverse multiplied by density, and this suggests the possibility of extracting nanometer-scale viscosity distribution by RD.Satoshi Nakaoka, Donatas Surblys, Yasutaka Yamaguchi, Koji Kuroda, Tadashi Nakajima, Hideo Fujimura, Local viscosity change in water near a solid–liquid interface and its extraction by means of molecular rotational diffusion – A molecular dynamics study, Chemical Physics Letters, Volume 591, 2014, Pages 306-311, https://doi.org/10.1016/j.cplett.2013.11.047

    Large-scale SPH simulations of droplet impact onto a liquid surface up to the consequent formation of Worthington jet

    Full text link
    In this study, the whole process of liquid droplet impact onto a liquid surface up to the consequent formation of the central column was simulated using the smoothed particle hydrodynamics method (SPH), and compared with an experiment using a high-speed video camera. The surface tension tensor for the particle-based expression was adequately included as the gradient of the surface tension and that enabled the simulation leading to the formations of crater and crown as well as the consequent central column. The simulated time series of the crater depth and diameter and crown height corresponded quantitatively well with the experimental result up to the rebound motion while discrepancies remained as a lower central column height in the simulation, and this seemed to be ascribed to the difficulty in realizing the complex surface structure that inevitably appeared in the fast rebound motion

    Bone fragility via degradation of bone quality featured by collagen/apatite micro-arrangement in human rheumatic arthritis

    Get PDF
    Although increased bone fragility is a well-recognized consequence in patients with rheumatoid arthritis (RA), the essential cause of degenerate bone strength remains unknown. This study aimed to determine factors contributing to bone dysfunction in RA by focusing on the bone matrix micro-arrangement, based on the preferential orientation of collagen and the related apatite c-axis as a bone quality index. The classical understanding of RA is limited to its severe pathological conditions associated with inflammation-induced bone loss. This study examined periarticular proximal tibiae from RA patients as compared with osteoarthritis (OA) patients as controls. Bone tissue material strength was disrupted in the RA group compared with the control. Collagen/apatite micro-arrangement and vBMD were significantly lower in the RA group, and the rate of decrease in apatite c-axis orientation (−45%) was larger than that in vBMD (−22%). Multiple regression analysis showed that the degree of apatite c-axis orientation (β = 0.52, p = 1.9 × 10−2) significantly contributed to RA-induced bone material impairment as well as vBMD (β = 0.46, p = 3.8 × 10−2). To the best of our knowledge, this is the first report to demonstrate that RA reduces bone material strength by deteriorating the micro-arrangement of collagen/apatite bone matrix, leading to decreased fracture resistance. Our findings represent the significance of bone quality-based analysis for precise evaluation and subsequent therapy of the integrity and soundness of the bone in patients with RA.Ozasa R., Matsugaki A., Ishimoto T., et al. Bone fragility via degradation of bone quality featured by collagen/apatite micro-arrangement in human rheumatic arthritis. Bone, 155, 116261. https://doi.org/10.1016/j.bone.2021.116261

    Increase in serum triglyceride was associated with coronary plaque vulnerability in a patient with rheumatoid arthritis

    Get PDF
    AbstractRates of morbidity and mortality from cardiovascular disease are high in patients with rheumatoid arthritis (RA); however, the mechanisms and biomarkers that reflect coronary plaque vulnerability have not yet been established. We present a case of acute coronary syndrome (ACS) presumably caused by exacerbation of chronic inflammation of RA, in which an abrupt increase in serum triglyceride was seen on the day of onset of ACS but not during effort angina. This case suggests that RA patients with an abrupt increase in triglyceride need intensive care including anti-platelet and statin therapy for the prevention of coronary plaque rupture.<Learning objective: Triglyceride might be a sensitive biomarker of activated macrophages and plaque vulnerability in patients with RA. RA patients with an abrupt increase in triglyceride might need intensive care including anti-platelet and statin therapy for the prevention of coronary plaque rupture.

    Circular DNA Intermediate in the Duplication of Nile Tilapia vasa Genes

    Get PDF
    vasa is a highly conserved RNA helicase involved in animal germ cell development. Among vertebrate species, it is typically present as a single copy per genome. Here we report the isolation and sequencing of BAC clones for Nile tilapia vasa genes. Contrary to a previous report that Nile tilapia have a single copy of the vasa gene, we find evidence for at least three vasa gene loci. The vasa gene locus was duplicated from the original site and integrated into two distant novel sites. For one of these insertions we find evidence that the duplication was mediated by a circular DNA intermediate. This mechanism of gene duplication may explain the origin of isolated gene duplicates during the evolution of fish genomes. These data provide a foundation for studying the role of multiple vasa genes in the development of tilapia gonads, and will contribute to investigations of the molecular mechanisms of sex determination and evolution in cichlid fishes

    Cutaneous Angiosarcoma: The Possibility of New Treatment Options Especially for Patients with Large Primary Tumor

    Get PDF
    The most widely accepted treatment for cutaneous angiosarcoma (CAS) is wide local excision and postoperative radiation to decrease the risk of recurrence. Positive surgical margins and large tumors (T2, >5 cm) are known to be associated with poor prognosis. Moreover, T2 tumors are known to be associated with positive surgical margins. According to previous reports, the majority of CAS patients in Japan had T2 tumors, whereas less than half of the patients in the studies from western countries did so. Consequently, the reported 5-year overall survival of Japanese CAS patients without distant metastasis was only 9%, lower than that for stage-IV melanoma. For patients with T2 tumors, management of subclinical metastasis should be considered when planning the initial treatment. Several attempts to control subclinical metastasis have been reported, such as using adjuvant/neoadjuvant chemotherapy in addition to conventional surgery plus radiation. Unfortunately, those attempts did not show any clinical benefit. Besides surgery, new chemotherapeutic approaches for advanced CAS have been introduced in the past couple of decades, such as paclitaxel and docetaxel. We proposed the use of chemoradiotherapy (CRT) using taxanes instead of surgery plus radiation for patients with T2 tumors without distant metastasis and showed a high response ratio with prolonged survival. However, this prolonged survival was seen only in patients who received maintenance chemotherapy after CRT, indicating that continuous chemotherapy is mandatory to control subclinical residual tumors. With the recent development of targeted drugs for cancer, many potential drugs for CAS are now available. Given that CAS expresses a high level of vascular endothelial growth factor (VEGF) receptor, drugs that target VEGF signaling pathways such as anti-VEGF monoclonal antibody and tyrosine kinase inhibitors are also promising, and several successful treatments have been reported. Besides targeted drugs, several new cytotoxic anticancer drugs such as eribulin or trabectedin have also been shown to be effective for advanced sarcoma. However, most of the clinical trials did not include a sufficient number of CAS patients. Therefore, clinical trials focusing only on CAS should be performed to evaluate the effectiveness of these new drugs

    Identification of amino acid residues responsible for von Willebrand factor binding to sulfatide by charged-to-alanine-scanning mutagenesis

    Get PDF
    von Willebrand factor (VWF) performs its hemostatic functions through binding to various proteins. The A1 domain of VWF contains binding sites of not only physiologically important ligands, but also exogenous modulators that induce VWF-platelet aggregation. Sulfatides, 3-sulfated galactosyl ceramides, that are expressed on oligodendrocytes, renal tubular cells, certain tumor cells and platelets, have been suggested to interact with VWF under some pathological conditions. The binding of VWF to sulfatide requires the A1 domain, but its binding sites have not been precisely identified. Here, we report that alanine mutations at Arg1392, Arg1395, Arg1399 and Lys1423 led to decreased VWF–sulfatide binding. These sites have been reported to be the binding sites for platelet membrane glycoprotein (GP) Ib and/or snake venom botrocetin, and, interestingly, are identical to the monoclonal antibody (mAb) NMC4 epitope previously reported to inhibit the VWF-GPIb interaction. We observed that NMC4 also inhibited VWF interaction with sulfatides in a dose-dependent manner. Thus, we conclude that VWF binding sites of sulfatide overlap those of platelet GPIb and botrocetin

    Green Tea Polyphenol EGCG Sensing Motif on the 67-kDa Laminin Receptor

    Get PDF
    BACKGROUND: We previously identified the 67-kDa laminin receptor (67LR) as the cell-surface receptor conferring the major green tea polyphenol (-)-epigallocatechin-3-O-gallate (EGCG) responsiveness to cancer cells. However, the underlying mechanism for interaction between EGCG and 67LR remains unclear. In this study, we investigated the possible role of EGCG-67LR interaction responsible for its bioactivities. METHODOLOGY/PRINCIPAL FINDINGS: We synthesized various peptides deduced from the extracellular domain corresponding to the 102-295 region of human 67LR encoding a 295-amino acid. The neutralizing activity of these peptides toward EGCG cell-surface binding and inhibition of cancer cell growth were assayed. Both activities were inhibited by a peptide containing the 10-amino acid residues, IPCNNKGAHS, corresponding to residues 161-170. Furthermore, mass spectrometric analysis revealed the formation of a EGCG-LR161-170 peptide complex. A study of the amino acid deletion/replacement of the peptide LR161-170 indicated that the 10-amino acid length and two basic amino acids, K(166) and H(169), have a critical role in neutralizing EGCG's activities. Moreover, neutralizing activity against the anti-proliferation action of EGCG was observed in a recombinant protein of the extracellular domain of 67LR, and this effect was abrogated by a deletion of residues 161-170. These findings support that the 10 amino-acid sequence, IPCNNKGAHS, might be the functional domain responsible for the anti-cancer activity of EGCG. CONCLUSIONS/SIGNIFICANCE: Overall, our results highlight the nature of the EGCG-67LR interaction and provide novel structural insights into the understanding of 67LR-mediated functions of EGCG, and could aid in the development of potential anti-cancer compounds for chemopreventive or therapeutic uses that can mimic EGCG-67LR interactions
    corecore