725 research outputs found

    Phytochrome-regulated EBL1 contributes to ACO1 upregulation in rice

    Get PDF
    The 1-aminocyclopropane-1-carboxylate oxidase gene (ACO1) was upregulated in rice (Oryza sativa L.) phyAphyBphyC mutants lacking any phytochrome and containing the GCC box element, a binding site for rice ethylene-responsive element binding protein 1 (OsEREBP1), in its promoter region. Since the OsEREBP1-like gene EBL1 (OsEREBP1-LIKE 1) was significantly downregulated in phyAphyBphyC mutants, EBL1 was suspected to repress ACO1 expression in wild-type plants. However, ACO1 was downregulated in EBL1 RNA interference plants, and the total length of these plants was slightly shorter than that of wild-type plants. This study shows that EBL1 is positively regulated by phytochrome B and associated with ACO1 upregulation

    Topical latanoprost causes posterior movement of lens in a patient with exfoliation syndrome and subluxated lens: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>To report the effect of topical latanoprost on the position of a subluxated lens.</p> <p>Case presentation</p> <p>After 0.005% latanoprost was administered topically to a patient with ocular hypertension due to a pseudoexfoliation syndrome and a subluxated lens, the position of the lens was examined by slit-lamp biomicroscopy, and the ciliary body thickness by ultrasound biomicroscopy. The lens had moved posteriorly, and the thickness of the ciliary body had decreased after the latanoprost.</p> <p>Conclusion</p> <p>We suggest that the decrease in the thickness of the ciliary body resulted in an increase in the tension of the zonule of Zinn fibers, thus pulling the subluxated lens posteriorly.</p

    FAK acts as a suppressor of RTK-MAP kinase signalling in Drosophila melanogaster epithelia and human cancer cells

    Get PDF
    Receptor Tyrosine Kinases (RTKs) and Focal Adhesion Kinase (FAK) regulate multiple signalling pathways, including mitogen-activated protein (MAP) kinase pathway. FAK interacts with several RTKs but little is known about how FAK regulates their downstream signalling. Here we investigated how FAK regulates signalling resulting from the overexpression of the RTKs RET and EGFR. FAK suppressed RTKs signalling in Drosophila melanogaster epithelia by impairing MAPK pathway. This regulation was also observed in MDA-MB-231 human breast cancer cells, suggesting it is a conserved phenomenon in humans. Mechanistically, FAK reduced receptor recycling into the plasma membrane, which resulted in lower MAPK activation. Conversely, increasing the membrane pool of the receptor increased MAPK pathway signalling. FAK is widely considered as a therapeutic target in cancer biology; however, it also has tumour suppressor properties in some contexts. Therefore, the FAK-mediated negative regulation of RTK/MAPK signalling described here may have potential implications in the designing of therapy strategies for RTK-driven tumours

    Role of mitochondrial raft-like microdomains in the regulation of cell apoptosis

    Get PDF
    Lipid rafts are envisaged as lateral assemblies of specific lipids and proteins that dissociate and associate rapidly and form functional clusters in cell membranes. These structural platforms are not confined to the plasma membrane; indeed lipid microdomains are similarly formed at subcellular organelles, which include endoplasmic reticulum, Golgi and mitochondria, named raft-like microdomains. In addition, some components of raft-like microdomains are present within ER-mitochondria associated membranes. This review is focused on the role of mitochondrial raft-like microdomains in the regulation of cell apoptosis, since these microdomains may represent preferential sites where key reactions take place, regulating mitochondria hyperpolarization, fission-associated changes, megapore formation and release of apoptogenic factors. These structural platforms appear to modulate cytoplasmic pathways switching cell fate towards cell survival or death. Main insights on this issue derive from some pathological conditions in which alterations of microdomains structure or function can lead to severe alterations of cell activity and life span. In the light of the role played by raft-like microdomains to integrate apoptotic signals and in regulating mitochondrial dynamics, it is conceivable that these membrane structures may play a role in the mitochondrial alterations observed in some of the most common human neurodegenerative diseases, such as Amyotrophic lateral sclerosis, Huntington's chorea and prion-related diseases. These findings introduce an additional task for identifying new molecular target(s) of pharmacological agents in these pathologies

    Comparative Functional Genomics Analysis of NNK Tobacco-Carcinogen Induced Lung Adenocarcinoma Development in Gprc5a-Knockout Mice

    Get PDF
    Background: Improved understanding of lung cancer development and progression, including insights from studies of animal models, are needed to combat this fatal disease. Previously, we found that mice with a knockout (KO) of G-protein coupled receptor 5A (Gprc5a) develop lung tumors after a long latent period (12 to 24 months). Methodology/Principal Findings: To determine whether a tobacco carcinogen will enhance tumorigenesis in this model, we administered 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) i.p. to 2-months old Gprc5a-KO mice and sacrificed groups (n = 5) of mice at 6, 9, 12, and 18 months later. Compared to control Gprc5a-KO mice, NNK-treated mice developed lung tumors at least 6 months earlier, exhibited 2- to 4-fold increased tumor incidence and multiplicity, and showed a dramatic increase in lesion size. A gene expression signature, NNK-ADC, of differentially expressed genes derived by transcriptome analysis of epithelial cell lines from normal lungs of Gprc5a-KO mice and from NNK-induced adenocarcinoma was highly similar to differential expression patterns observed between normal and tumorigenic human lung cells. The NNK-ADC expression signature also separated both mouse and human adenocarcinomas from adjacent normal lung tissues based on publicly available microarray datasets. A key feature of the signature, up-regulation of Ube2c, Mcm2, and Fen1, was validated in mouse normal lung and adenocarcinoma tissues and cells by immunohistochemistry and western blotting, respectively

    Rab18 Dynamics in Adipocytes in Relation to Lipogenesis, Lipolysis and Obesity

    Get PDF
    Lipid droplets (LDs) are organelles that coordinate lipid storage and mobilization, both processes being especially important in cells specialized in managing fat, the adipocytes. Proteomic analyses of LDs have consistently identified the small GTPase Rab18 as a component of the LD coat. However, the specific contribution of Rab18 to adipocyte function remains to be elucidated. Herein, we have analyzed Rab18 expression, intracellular localization and function in relation to the metabolic status of adipocytes. We show that Rab18 production increases during adipogenic differentiation of 3T3-L1 cells. In addition, our data show that insulin induces, via phosphatidylinositol 3-kinase (PI3K), the recruitment of Rab18 to the surface of LDs. Furthermore, Rab18 overexpression increased basal lipogenesis and Rab18 silencing impaired the lipogenic response to insulin, thereby suggesting that this GTPase promotes fat accumulation in adipocytes. On the other hand, studies of the Ξ²-adrenergic receptor agonist isoproterenol confirmed and extended previous evidence for the participation of Rab18 in lipolysis. Together, our data support the view that Rab18 is a common mediator of lipolysis and lipogenesis and suggests that the endoplasmic reticulum (ER) is the link that enables Rab18 action on these two processes. Finally, we describe, for the first time, the presence of Rab18 in human adipose tissue, wherein the expression of this GTPase exhibits sex- and depot-specific differences and is correlated to obesity. Taken together, these findings indicate that Rab18 is involved in insulin-mediated lipogenesis, as well as in Ξ²-adrenergic-induced lipolysis, likely facilitating interaction of LDs with ER membranes and the exchange of lipids between these compartments. A role for Rab18 in the regulation of adipocyte biology under both normal and pathological conditions is proposed

    The Testicular and Epididymal Expression Profile of PLCΞΆ in Mouse and Human Does Not Support Its Role as a Sperm-Borne Oocyte Activating Factor

    Get PDF
    Phospholipase C zeta (PLCΞΆ) is a candidate sperm-borne oocyte activating factor (SOAF) which has recently received attention as a potential biomarker of human male infertility. However, important SOAF attributes of PLCΞΆ, including its developmental expression in mammalian spermiogenesis, its compartmentalization in sperm head perinuclear theca (PT) and its release into the ooplasm during fertilization have not been established and are addressed in this investigation. Different detergent extractions of sperm and head/tail fractions were compared for the presence of PLCΞΆ by immunoblotting. In both human and mouse, the active isoform of PLCΞΆ was detected in sperm fractions other than PT, where SOAF is expected to reside. Developmentally, PLCΞΆ was incorporated as part of the acrosome during the Golgi phase of human and mouse spermiogenesis while diminishing gradually in the acrosome of elongated spermatids. Immunofluorescence localized PLCΞΆ over the surface of the postacrosomal region of mouse and bull and head region of human spermatozoa leading us to examine its secretion in the epididymis. While previously thought to have strictly a testicular expression, PLCΞΆ was found to be expressed and secreted by the epididymal epithelial cells explaining its presence on the sperm head surface. In vitro fertilization (IVF) revealed that PLCΞΆ is no longer detectable after the acrosome reaction occurs on the surface of the zona pellucida and thus is not incorporated into the oocyte cytoplasm for activation. In summary, we show for the first time that PLCΞΆ is compartmentalized as part of the acrosome early in human and mouse spermiogenesis and is secreted during sperm maturation in the epididymis. Most importantly, no evidence was found that PLCΞΆ is incorporated into the detergent-resistant perinuclear theca fraction where SOAF resides

    FSP27 Promotes Lipid Droplet Clustering and Then Fusion to Regulate Triglyceride Accumulation

    Get PDF
    Fat Specific Protein 27 (FSP27), a lipid droplet (LD) associated protein in adipocytes, regulates triglyceride (TG) storage. In the present study we demonstrate that FSP27 plays a key role in LD morphology to accumulate TGs. We show here that FSP27 promotes clustering of the LDs which is followed by their fusion into fewer and enlarged droplets. To map the domains of FSP27 responsible for these events, we generated GFP-fusion constructs of deletion mutants of FSP27. Microscopic analysis revealed that amino acids 173–220 of FSP27 are necessary and sufficient for both the targeting of FSP27 to LDs and the initial clustering of the droplets. Amino acids 120–140 are essential but not sufficient for LD enlargement, whereas amino acids 120–210 are necessary and sufficient for both clustering and fusion of LDs to form enlarged droplets. In addition, we found that FSP27-mediated enlargement of LDs, but not their clustering, is associated with triglyceride accumulation. These results suggest a model in which FSP27 facilitates LD clustering and then promotes their fusion to form enlarged droplets in two discrete, sequential steps, and a subsequent triglyceride accumulation

    The putative Tumor Suppressor VILIP-1 Counteracts Epidermal Growth Factor-Induced Epidermal-Mesenchymal Transition in Squamous Carcinoma Cells

    Get PDF
    Epithelial-mesenchymal transition (EMT) is a crucial step for the acquisition of invasive properties of carcinoma cells during tumor progression. Epidermal growth factor (EGF)-treatment of squamous cell carcinoma (SCC) cells provokes changes in the expression of lineage markers, morphological changes, and a higher invasive and metastatic potential. Here we show that chronic stimulation with EGF induces EMT in skin-derived SCC cell lines along with the down-regulation of the epithelial marker E-cadherin, and of the putative tumor suppressor VILIP-1 (visinin-like protein 1). In esophageal squamous cell carcinoma and non-small cell lung carcinoma the loss of VILIP-1 correlates with clinicopathological features related to enhanced invasiveness. VILIP-1 has previously been shown to suppress tumor cell invasion via enhancing cAMP-signaling in a murine SCC model. In mouse skin SCC cell lines the VILIP-1-negative tumor cells have low cAMP levels, whereas VILIP-1-positive SCCs possess high cAMP levels, but low invasive properties. We show that in VILIP-1-negative SCCs, Snail1, a transcriptional repressor involved in EMT, is up-regulated. Snail1 expression is reduced by ectopic VILIP-1-expression in VILIP-1-negative SCC cells, and application of the general adenylyl cyclase inhibitor 2β€²,3β€²-dideoxyadenosine attenuated this effect. Conversely, EGF-stimulation of VILIP-1-positive SCC cells leads to the down-regulation of VILIP-1 and the induction of Snail1 expression. The induction of Snail is inhibited by elevated cAMP levels. The role of cAMP in EMT was further highlighted by its suppressive effect on the EGF-induced enhancement of migration in VILIP-1-positive SCC cells. These findings indicate that VILIP-1 is involved in EMT of SCC by regulating the transcription factor Snail1 in a cAMP-dependent manner
    • …
    corecore