34 research outputs found

    Comparison of cortical activation during Mahjong game play in a video game setting and a real-life setting

    Get PDF
    The purpose of this study was to compare the hemodynamic changes that occur during Mahjong game play in virtual and real-life settings. Fourteen healthy right-handed men (average age ± standard deviation; 36.7 ± 14.9 years) played: 1) a Mahjong solitaire game on a video console against virtual rivals; 2) a Mahjong game against human opponents without conversation; and 3) a Mahjong game against human opponents with conversation. We measured oxygenated hemoglobin concentration at 44 locations over both hemispheres during Mahjong game play in each setting using near-infrared spectroscopy. The increase in oxygenated hemoglobin concentration at several locations, including Broca’s area, the somatosensory cortex, the somatosensory association cortex, the supramarginal gyrus part of Wernicke’s area, the primary and auditory association cortex, the angular gyrus part of Wernicke’s area, and the associative visual cortex was greater during game play in the real-life settings than during game play in the video game setting. There were no significant differences during game play in real-life settings without and with conversation. Each cortical area correlated with broad or specific areas. The common correlation areas were found at Angular gyrus part of Wernicke’s area of left hemisphere during real-life settings without and with conversation, but not during game play in a video game setting. These results suggest that the brain responds differently to game play in real world and virtual world settings, and indicate that comparison of games played in the virtual world and the real world may be an effective model to enhance understanding of the effects of video game on the brain.ArticleBiochemistry & Analytical Biochemistry.4(2):164(2015)journal articl

    Comparison of cortical activation during subtraction in mental calculation and with a calculator

    Get PDF
    Several studies have shown that various types of cognitive processing exist and exert different effects on brain activity. However, when a subject performs the same task, whether the task involves processing or not, such as in mental calculation or with a calculator, the different influences on the brain remain unclear. The purpose of this study was to examine whether the influence of cortical activation when performing mental calculation and using a calculator have different effects on the brain. Fifteen healthy, right-handed participants (mean age, 26.3 ± 8.5 years; 12 men, 27.7 ± 9.0 years; 3 women, 20.6 ± 1.1 years) were recruited as subjects. We measured oxygenated hemoglobin (oxy-Hb) levels while subjects performed subtraction tasks by mental calculation or using a calculator (3 min each). Measurements were made at the frontal lobe and temporal lobe. In both lobes, oxy-Hb level was significantly increased during mental calculation. Locations showing significantly increased oxy-Hb in mental calculation were the prefrontal cortex in the frontal lobe and supramarginal gyrus in the temporal lobe. These results suggest that the brain responds differently to tasks in mental calculation and using a calculator. We hypothesized that using the electronic calculator needs fewer neural networks than performing mental calculation. In recent years, thanks to the development of machines, many tasks have been automated, making our lives easier and more convenient. Our results may provide one example that the developments of modern technology influence brain function.ArticleBiochemistry & Analytical Biochemistry.4(3):185(2015)journal articl

    Έλεγχος και ανάλυση υδραυλικής αντλίας με εφαρμογές σε συστήματα άρδευσης

    Get PDF
    <p>In the HBSS model, the isolated islet yield was significantly increased in the ductal injection (gray bar: ductal group: n = 9), vascular perfusion (dotted bar: vascular group: n = 9), and ductal injection/vascular perfusion groups (squared bar: combination group: n = 10) compared with that of the cold ischemia control group (black bar: control group: n = 9). The islets isolated from pancreases with a negligible cold ischemia time (less than 10 min) served as the fresh control group (white bar: fresh group: n = 7). The islet yield of the fresh group was significantly higher than that of the other groups. No significant differences were observed among the ductal, vascular, and combination groups. *<i>P</i><0.05, **<i>P</i><0.005, ***<i>P</i><0.0001.</p

    Concomitant administration of radiation with eribulin improves the survival of mice harboring intracerebral glioblastoma

    Get PDF
    Glioblastoma is the most common and devastating type of malignant brain tumor. We recently found that eribulin suppresses glioma growth in vitro and in vivo and that eribulin is efficiently transferred into mouse brain tumors at a high concentration. Eribulin is a non‐taxane microtubule inhibitor approved for breast cancer and liposarcoma. Cells arrested in M‐phase by chemotherapeutic agents such as microtubule inhibitors are highly sensitive to radiation‐induced DNA damage. Several recent case reports have demonstrated the clinical benefits of eribulin combined with radiation therapy for metastatic brain tumors. In this study, we investigated the efficacy of a combined eribulin and radiation treatment on human glioblastoma cells. The glioblastoma cell lines U87MG, U251MG and U118MG, and SJ28 cells, a patient‐derived sphere culture cell line, were used to determine the radiosensitizing effect of eribulin using western blotting, flow cytometry and clonogenic assay. Subcutaneous and intracerebral glioma xenografts were generated in mice to assess the efficacy of the combined treatment. The combination of eribulin and radiation enhanced DNA damage in vitro. The clonogenic assay of U87MG demonstrated the radiosensitizing effect of eribulin. The concomitant eribulin and radiation treatment significantly prolonged the survival of mice harboring intracerebral glioma xenografts compared with eribulin or radiation alone (P < .0001). In addition, maintenance administration of eribulin after the concomitant treatment further controlled brain tumor growth. Aberrant microvasculature was decreased in these tumors. Concomitant treatment with eribulin and radiation followed by maintenance administration of eribulin may serve as a novel therapeutic strategy for glioblastomas

    Thioredoxin-1 attenuates early graft loss after intraportal islet transplantation in mice.

    Get PDF
    AIMS: Recent studies suggest that decreasing oxidative stress is crucial to achieve successful islet transplantation. Thioredoxin-1 (TRX), which is a multifunctional redox-active protein, has been reported to suppress oxidative stress. Furthermore, it also has anti-inflammatory and anti-apoptotic effects. In this study, we investigated the effects of TRX on early graft loss after islet transplantation. METHODS: Intraportal islet transplantation was performed for two groups of streptozotocin-induced diabetic mice: a control and a TRX group. In addition, TRX-transgenic (Tg) mice were alternately used as islet donors or recipients. RESULTS: The changes in blood glucose levels were significantly lower in the TRX group compared with the TRX-Tg donor and control groups (p<0.01). Glucose tolerance and the residual graft mass were considerably better in the TRX group. TRX significantly suppressed the serum levels of interleukin-1β (p<0.05), although neither anti-apoptotic nor anti-chemotactic effects were observed. Notably, no increase in the 8-hydroxy-2'-deoxyguanosine level was observed after islet infusion, irrespective of TRX administration. CONCLUSIONS: The present study demonstrates that overexpression of TRX on the islet grafts is not sufficient to improve engraftment. In contrast, TRX administration to the recipients exerts protective effects on transplanted islet grafts by suppressing the serum levels of interleukin-1β. However, TRX alone appears to be insufficient to completely prevent early graft loss after islet transplantation. We therefore propose that a combination of TRX and other anti-inflammatory treatments represents a promising regimen for improving the efficacy of islet transplantation

    The effects of ductal injection and/or vascular perfusion on the islet yield (UWS).

    No full text
    <p>In the UWS model, the isolated islet yield significantly increased in the ductal injection (gray bar: ductal group: n = 10), vascular perfusion (dotted bar: vascular group: n = 9), and ductal injection/vascular perfusion groups (squared bar: combination group: n = 10) in comparison to that of the cold ischemia control group (black bar: control group: n = 10). No significant differences were observed among the ductal, vascular, and combination groups. *<i>P</i><0.0001.</p
    corecore