37 research outputs found

    New design method of FIR filters with SP2 coefficients based on a new linear programming relaxation with triangle inequalities

    Get PDF
    Publication in the conference proceedings of EUSIPCO, Toulouse, France, 200

    Effects of Initial Graft Tension during Anterior Talofibular Ligament Reconstruction on Ankle Kinematics, Laxity, and In-situ Forces of the Reconstructed Graft

    Get PDF
    前距腓靭帯は,足関節の安定性に関わる重要な靱帯である.前距腓靱帯の損傷後に慢性的な足関節の不安定性が残存した場合,前距腓靱帯再建手術が必要となるが,その際に再建靭帯にかける適切な張力について研究した報告はなかった.本論文では,再建靭帯にかける張力の違いが,足関節のキネマティクス,制動性,術後の靱帯張力に及ぼす影響と適切な再建靭帯初期固定張力を明らかにした

    Prominent reflector beneath around the segmentation boundary between Tonankai-Nankai earthquake area

    Get PDF
    In the Nankai Trough subduction seismogenic zone, the Nankai and Tonankai earthquakes had often occurred simultaneously, and caused a great event. In most cases, first break of such large events of Nankai Trough usually begins from southwest off the Kii Peninsula so far. The idea of split Philippine Sea plate between the Kii Peninsula and the Shikoku Island, which explains seismicity, tectonic background, receiver function image and historical plate motion, was previously suggested. Moreover, between the Kii Peninsula and the Shikoku Island, there is a gap of deep low-frequency events observed in the belt-like zone along the strike of the subducting Philippine Sea plate. In 2010 and 2011, we conducted the large-scale high-resolution wide-angle and reflection (MCS) seismic study, and long-term observation from off Shikoku and Kii Peninsula. Marine active source seismic data have been acquired along grid two-dimensional profiles having the total length of ~800km/year. A three-dimensional seismic tomography using active and passive seismic data observed both land and ocean bottom stations have been also performed. From those data, we found a possible prominent reflector imaged in the offshore side in the Kii channel at the depth of ~18km. The velocity just beneath the reflector cannot be determined due to the lack of ray paths. Based of the amplitude information, we interpret the reflector as the forearc Moho based on the velocity gap (from ~6.4km/s to ~7.4km/s). However, the reflector is shallower than the forearc Moho of other area along the Nankai Trough. Similar reflectors are recognized along other seismic profiles around the Kii channel. In this presentation, we will show the result of structure analysis to understand the peculiar structure including the prominent reflector around the Kii channel. Relation between the structure and the existence of the segmentation of the Nankai megathrust earthquake or seismic gap of the deep low-frequency events will be also discussed. This study is part of 'Research concerning Interaction Between the Tokai, Tonankai and Nankai Earthquakes' funded by Ministry of Education, Culture, Sports, Science and Technology, Japan.Poster abstract T43C-2670 presented at 2013 Fall Meeting, AGU, San Francisco, Calif., 9-13 Dec
    corecore