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Semidefinite Programming Relaxation for Nonconvex
Quadratic Programs

R TH¥ERFE BIL LW (Tetsuya Fujie)
RREITEKRY /NE BH (Masakazu Kojima)

Abstract. Any quadratic inequality in the n-dimensional Euclidean space can be
relaxed into a linear matrix inequality in (14 n) X (1 + n) symmetric matrices. Based
on this principle, we extend the Lovész-Schrijver SDP (semidefinite programming) re-
laxation developed for a 0-1 integer program to a general nonconvex QP (quadratic
program), and present some fundamental characterization of the SDP relaxation in-
cluding its equivalence to a relaxation using convex-quadratic valid inequalities for the
feasible region of the QP.

Key words. Semidefinite Program, Relaxation Method, Interior-Point Method,
Linear Matrix Inequality, Nonconvex Quadratic Program

1 Introduction.

We use the symbols S(m) for the set of m x m symmetric matrices, and S(m)4 (or
S(m)44) for the cone consisting of m X m symmetric positive semidefinite (or positive
definite, respectively) matrices. We are concerned with a canonical form QP:

Minimize ¢’y subject to y € F. (1)
Here .
F = {yeRHn Dy =1, yTPkySO(kzl,Q,...,m)},‘
Yo
Y1
c = <Z>€R1+",yz .| € R,
: (2)
Yn
T /<
_ Tk qk/2> ;
P, = ( €S(1+n)(k=1,2,...,m),
a:/2  Qy ( (
T € R, q.€R" Q,eSn)(k=12,...,m). )

Note that the feasible region F is contained in the n-dimensional hyperplane H =
{y € R™*™ : y; = 1}, and that the function H > y — y7Pyy € R involved in
the inequality constraint is convex (or linear) if and only if Q, € S(n)+ (or Q, = O,
respectively). @, can be indefinite, so that the feasible region F of the QP (1) is a
nonconvex subset of the hyperplane H in general. The canonical form QP (1) covers
various mathematical programs such as 0-1 IPs, general nonconvex QPs and linear
complementarity problems.
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SDP(Semidefinite Program) has been considered as a powerful tool for relaxation
of many combinatorial optimization problems, since it yields a tight bound [1, 2, 5, 6,
8, 13, 17] and it is efficiently solvable by interior methods [1, 2, 3, 4, 7, 9, 12, 16]. SDP
relaxation is originally proposed by Lovész[10] for stable set problems.

Among many literatures related on SDP relaxation, this paper was motivated by
Alizadeh [1] where an elementary outline of the SDP relaxation method proposed
by Lovdsz-Schrijver [11] for 0-1 IPs (integer programs) was presented. The aimn of
this paper is to present a general method for constructing an SDP which serves as a
relaxation of the QP (1) and some fundamental properties on the SDP relaxation. Our
SDP relaxation method may be regarded as a straightforward extension of the Lovész-
Schrijver SDP relaxation method [11] for 0-1 IPs to the QP (1). It is also characterized
in terms of

¢ a dual of Shor’s relaxation method [14] (see also [15]) for general nonconvex QPs
(this will be discussed in Section 5), and

e a relaxation using convez-quadratic valid inequalities for the feasible region F.

Let
T
_( 7 42 ) n
P= €S(l4+n), TER, g€ R, Q € S(n).
(s ‘97 )esaen. ner ger Qesm)
We say that an inequality y? Py < 0 is a convex-quadratic (or linear) valid inequality
for F if

Q € S(n)4 (or Q = O, respectively) and y" Py < 0 for every y € F.

Then co F, the convex hull of F is completely determined by all the convex-quadratic
valid inequalities for F;

co F = ﬂ {ye R . 4y =1, y" Py <0},
Py :

where V denotes the set of all matrices P € S(1+n) that induce convex-quadratic valid
inequalities for F. (The identity above is well-known when V is the set of all matrices
P € §(1 + n) that induce linear valid inequalities for F). The discussion above leads
us to a relaxation of the QP (1) using all convex-quadratic valid inequalities for F that
we can generate as a nonnegative combination of the quadratic inequalities of the QP
(1):

Minimize ¢’y subject to y € F, (3)



where
T = {teR™ : t>0, > tQ, € S(n)+},
k=1
fily) = y* (Z tkPk> y for every y € R\ (t e T),
k=1 .
F = {y €R™" 1 yo=1 and fy(y) <0 (te D)}, L (4)
Yo = 1 and yT <ZILLP]€) Yy S 0
= {y € R : k=1 m
for every t > 0 such that > t:.Q; € S(n)+

k=1 J

Although the derivation of the relaxation (3) of the QP (1) is simple and straightfor-
ward, it seems difficult to implement the relaxation (3) on computer because the set T
over which the index vector t of the convex-quadratic inequality fi(y) < 0 changes is
a continuum, non-polyhedral and convex subset of R™ in general. Under a moderate
assumption (Condition 2.2), the main theorem (Theorem 2.3) establishes the equiva-
lence between the SDP relaxation and the relaxation (3) using convex-quadratic valid
inequalities. Thus the SDP relaxation may be regarded as an implementable version
of the relaxation (3). ;

We give the main theorem without proof in Section 2. Section 3 states a basic
principle which makes it possible for us to extend the Lovész-Schrijver SDP relax-
ation method for IPs to nonconvex QPs. In Section 4, we present Shor’s relaxation
method [14], and show some duality relation among the SDP relaxation, Shor’s relax-
ation and the relaxation (3) using convex-quadratic valid inequalities. The discussions
in Sections 3 and 4 are not only necessary to prove the main theorem, but also helpful
to the readers’ deep understanding of the SDP relaxation. Section 5 is devoted to a
proof of the main theorem.

2 Main Theorem.

For every A € S(m) and B € S(m), A ¢ B denotes their inner product, i.e., Ae B =
Tr AT B (the trace of AT B). It should be noted that any linear function ¢ : S(m) — R
can be written as g(Y) = A oY for some A € S(m). Define

T \
C = (d}Z dO/Q)ES(l—i-n),
G = (YeS1+n)y : Yo=1, PreY <0(k=12,...,m)},
| . r
0 (D)

F = {Ye : YEG}, eg=| 0 | € R,
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Obviously, G and F are convex subsets of S(1 + n) and R'*", respectively. We now
introduce the SDP which will serve as a relaxation of the QP (1):

Minimize C oY subject to Y € G; (6)
We can rewrite the SDP as a convex minimization problem in the Euclidean space:
Minimize ¢’y subject to y € F. (7)
The two problems (6) and (7) above are equivalent in the sense that:
Lemma 2.1

1. y 1is a feasible solution of the problem (7) if and only if y = Y e for some feasible
solution Y of the problem (6).

2. y is a minimum solution of the problem (7) if and only if y = Yeqy for some
minimum solution Y of the problem (6).

3. inf{CeY : Yeé}:inf{cTy : yE]?}. 1

We will be mainly concerned with the convex minimization problem (7) instead of the
SDP (6). If we restrict ourselves to QPs derived from 0-1 IPs, our construction of the
problem (7) is a special case of the Lovész-Schrijver [11] relaxation method. We impose
the following condition on the feasible region G of the SDP (6) in the main theorem
below. ’

Condition 2.2 There is an interior point Y of the feasible region G of the SDP (6),
aY € S(1+n);, satisfyingYopo =1 and PreY <0(k=1,2,....,m). 1

Now we consider the convex minimization problem (3) introduced in the Introduc-
tion as a relaxation of the QP (1) using convex-quadratic valid inequalities for F. If
all the extreme points and all the extreme rays of F are contained in F then F co-
incides with co F, the convex hull of F and the problem (3) gives the best convex
relaxation of the QP (1). But F # co F in general. We focus our attention to a subset
of extreme points of F which are shown to be contained in F ((iii) of Theorem 2.3).
We say that a point y € F is a strictly convex boundary point of F if there exists a
t = (t1,t2,...,tm)T > 0 such that

m m
'yT <Z tkPk> Yy = 0 and Z thk c S(n)++. (8)
k=1 k=1

It should be noted that the definition of a strictly convex boundary point depends on
the algebraic representation of F. That is, a strictly convex boundary point y of F
of the representation (4) is not necessarily a strictly convex boundary point of F of a
distinct representation. See section 6.

Now we are ready to state: '



Theorem 2.3 (main theorem)
1. FCFCF.
2. Suppose that the feasible region G satisfies Condition 2.2. Then
inf{c’y : ye F}=inf{c’y : ye F} (9)
for every ¢ € R'*", and F = cl F, the closure of F.
3. Ewvery strictly convex boundary point y of F belongs to F. g

Proof of the theorem is given in Section 5.

3 A Single Quadratic Inequality.

The most important principle behind the SDP relaxation is: Any quadratic inequal-
ity in the n-dimensional Euclidean space can be relaxed into a linear matrix in-
equality in (1 4+ n) X (1 + n) symmetric matrices. We will associate each vector
y=(Ly,Y,. .., ¥)7 in R with a (1 + n) X (1 4+ n) symmetric matrix

I »n % o U
Yi. Ny niye o YiYw
Y=yy' =| vo o1 wy - Wi | €S(1+n). (10)
Yn UnlY1t UnY2 - Ynln
The matrix Y € S(1 + n) contains all the constant, linear and quadratic “atomic”
terms, i.e., the nonzero constant term 1, the n linear terms 3,¥s,...,Yy, and the
n? quadratic terms y1¥1,y1¥2, ..., Ya¥Ys in its elements, so that we can represent any
function consisting of linear and quadratic forms of 1,92, ...,y in terms of a linear

combination of those terms, i.e., a linear function P eY of Y for some P € S(1+n).
By the construction, for

T qT/2> ,
P= €S(1+n), g€ R*,Q € 5(n), 11
(o %07 )estsm. q () (1)
we see that
yTPy=PeY (12)
whenever
y=Yey o=1 and Y = yy’. (13)

On the other hand, we know that an (1+n) x (1+n) matrix Y satisfies (13) for some
¥ = (Y0,Y1,---,¥n)" € R if and only if

y=Yey Yoo=1, Y €S(1+n); andrankY =1.
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Hence
ye R yTPy<0 andyp =1

if and only if
y=Ye €R", PeY <0, Yyo=1,Y eS(1+n); andrank Y = 1.
Dropping the last rank condition rank Y = 1, we obtain:

Lemma 3.1 Let P € S(1+n). If
yTPy <0 andyy =1 (14)
then
y=Ye € R PeY <0, Yo=1 and Y € S(1+n); (15)
for someY € S(1+n). g

(Relaxation by dropping the rank condition as mentioned above has been utilized in
many papers [1, 2, 5, 7, 8, 10, 13, 17], etc.).

Lemma 3.2 Let P be a (1+n) x (14 n) symmetric matriz of the form (11). Suppose
that a (1 +n) x (1 +n) matriz Y and y € R**" satisfy the relation (15). Let

1 1 2T
y_(a:) andY—(w X>'

yYTPy=PeY —-Qe (X —zzT) < -Q o (X —zx”).

If in addition the n X n matriz Q is positive semi-definite then y satisfies the relation

(14).

Then

Proof: By the definitions of the matrices P and Y, we have that

y'Py = 7+q7c+2"Qzx _
= 1+q¢"c+QeX -Qe(X —zz”)
= PeY -Qo (X —zz’)
< —-Qe(X —zz”).
Thus we have shown the first assertion. It follows from Y € S(1+n); and Yy =1

that X — zx” € S(n);. Hence if @ € S(n), then Q o (X — zz”) > 0; hence
y"Py <0.



4 Duality.

Applying Shor’s relaxation method [14] to the QP (1), we obtain an SDP
Maximize to subject to t € T, (16)

where

T = {t = (tort1y. oo tm)’ prt

C—toeonT+Zt,-P,- € S(l +TL)+, }
t; >0(i=1,2,...,m)

Between the two problems (16) and (1), the following relation holds.

Lemma 4.1 ([14], see also [17]) Ift = (to,t1,-.-,tm)’ € R™ is a feasible solution
of the SDP (16) and y € R'*" a feasible solution of the QP (1), then their objective
values ty and cTy satisfies the inequality ty < cTy; sup{ty : t € T} < inf{c"y
yeF} '

Proof: Assume that t = (tg,t1,...,tm)T € T¢ and y € F. Then

m m
OSM(C—M%%+Z)£Jy=3@—%+XM¢PmSJQ—w

=1 i=1
(This proof is essentially due to [17]).

The SDP (16) is corresponding to the Lagrangian dual of the QP (1). See the
papers [13, 14, 15] for details.

It is easily verified that the SDPs (6) and (16) are dual to each other. Hence,
from the duality theorem (see, for example, Theorem 4.2.1 of [12]) and Lemma 2.1, we
obtain:

Lemma 4.2 (Duality between (3) and (16))

1. Ift = (to,t1,...,tm)T € R'™ isa feasible solution of the SDP (16) andy € R'*™
a feasible solution of the problem (8), their objective values to and ¢’y satisfy
to < cTy;sup{ty : t € T} <inf{c’y : y e F}.

2. Suppose that Condition 2.2 holds and that —o0 < § =inf{cTy : y € F }. Then
the SDP (16) has a mazimum solution t* € R'™™ with the mazimum objective
value ty = §.

The lemma, below establishes a weak duality relation between the convex minimiza-
tion problem (3) and the SDP (16).

Lemma 4.3 Ift = (to,t1,...,tm) € R™™ is a feasible solution of the SDP (16) and
y € R q feasible solution of the problem (3), their objective values to and cTy satisfy
to < c'y;

sup{ty : t € T} < inf{cTy : y € F}.
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Proof: Suppose that t € T¢ and y € R™*" € F. Let

z=( 5 ™ )= toeel + 3 1P,
where ( € R, w € R" and Q € S(n). We see by the definitions of the matrices C,
eoel, P, € S(1+n) (k=1,2,...,m) that Q = 7, t+Q;. On the other hand, it
follows from Z € S(1 + n); that Q@ = Yj., Q) € S(n);. Hence we obtain from

m

y € F that y7 (Z tkPk) y < 0. Consequently,
k=1

0<y’Zy =y"Cy —toy" evegy + y* (Z tkPk> y <y —t.
k=1

5 Proof of the Main Theorem.

(i) The first inclusion relation F C F follows from Lemma 3.1. To prove the second
inclusion relation F C F, assume that y € F. Then there exists a Y € G such that
y = Yeg; specifically Y satisfies 0 > ProY (k=1,2,...,m). Hence

m
(Z tkPk> oY <0 for every t = (t1,t,...,tm)’ > 0.
k=1
By Lemma 3.2, we see that
yT (Z tkPk> y <0 whenever Y #.Q, € S(n)s.
k=1 k=1

This implies y € F. Thus we have shown that F C F.
(ii) Since F C F, we know that

inf{c"y :y € F} <inf{c"y:y € F} (17)

for every ¢ € R'*". Let ¢ € R*" be fixed arbitrarily. If inf{cTy : y € F} = —o0
then inf{cTy : y € F} = —o0 by (17). Hence we obtain the equality (9). So assume
that § = inf{cTy : y € F} > —oo. By Lemma 4.2, there exists a maximum solution
t = (t5,1],...,t5)T € R1*™ of the SDP (16) with the objective value t5 = §. We also
see by Lemma 4.3 that ¢} < inf{cTy : y € F}. Therefore

inf{c"y:ye F} < inf{c"y:yeF} =g =t; <inf{c"y:ye F}.

Thus we have shown the equality (9). By the construction, F is a closed convex subset
of R*" and F is a convex subset of R'*". Hence the identity (9) for every ¢ € R'*"
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implies that F = cl F.

(iii) Assume on the contrary that y ¢ F for some strictly convex boundary point y
of F. It follows from y ¢ F that y"P;y > 0 for some j € {1,2,...,m}. Since y is
a strictly convex boundary point of F, there exists some t = (t1,ts,...,t,)7 > 0 for
which

Yo = ]., yT (Z tkPk) Yy = 0 and Zf}ch € S(7Z)++
k=1

k=1
holds. Hence if € > 0 is sufficiently small, we obtain

yo =1, yT (Z trPr + €P; ) y >0 and ZthL +€Q; € S(n)44,

k=1 k=1

which is a contradiction to the assumption that y € F. This completes the proof of
the main theorem.

6 Concluding Discussion.

The effectiveness of the SDP relaxation for a nonconvex QP (or a 0-1 IP) depends
on the representation of its feasible region using linear and/or quavdratic'inequalities.
Suppose that the feasible region F of the canonical form QP (1) is bounded and involves
some linear inequality constraints

y Py =7+ afx <0 (k € K),

where y = ( i ) ;and K C {1,2,...,m}. Let S denote the polyhedral region deter-

mined by these linear inequalities;

Sz{y:(i) : 7rk+q;fa:§0(k€K)}.

We want to cut off all the vertices of S that do not lie in F when we apply the SDP
relaxation. As we will see below, this is always possible if we replace those hnear
inequality constraints by convex-quadratic inequality constraints

y Py = (1 + ¢l a)(r, + qfz) < 0 (k € K),

where

P

Tk (7}, + ) gt /2 A T R
1 = 3 ) b€ L
( (7, + T)qe /2 Q. €S(1+n), Qr = q,q; € S(n)4 (k € K),

and 7, (k € K) are sufficiently large numbers such that

m+qre<0<n+qlz (ke K) foreveryy=<i)€.7—". (18)
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Let
Yo =1,
F={yeR™ : yTPy<0(ie{l,2,...,m}\K),
yTPly <0 (ke K)

The condition (18) above on 7}, (k € K') ensures that 7' = F. Suppose that y = < ; >

is a vertex of S. Then there exists a subset K’ of K such that
yY'Pry=m,+qiz=0 (k€ K') and {g, € R" : k € K'} forms a basis of R".

Hence

ST y"PLy=0 and 3 Q) € S(n)14.

ke K ke R’

If in addition y € F " then y is a strictly convex boundary point of F ’; hence y € F'

by (iii) of Theorem 2.3. Therefore we can conclude that every vertex y of S belongs
~/

to F if and only if y € F.

Acknowledgment. The authors are grateful to Professors Stephen Boyd, Farid Al-
izadeh, Henry Wolkowicz for their helpful comments and references. In particular, the
paper [14] was brought to the authors by Stephen Boyd.

References

[1] W.F. Alizadeh, “Interior point methods in semidefinite programming with appli-
cation to combinatorial optimization,” SIAM Journal on Optimization 5 (1995)
13-51.

[2] W.F. Alizadeh, J. -P. A. Haeberly and M. L. Overton, “Primal-dual interior-point
methods for semidefinite programming,” 1994.

[3] S. Boyd, L. E. Ghaoui, E. Feron and V. Balakrishnan, Linear Matriz Inequalities
in System and Control Theory, (SIAM, Philadelphia, 1994).

[4] R. M. Freund, “Complexity of an algorithm for finding an approximate solution
of a semidefinite program with no regularity assumption,” Technical report OR
302-94, Operations Research Center, MIT, 1994.

[5] M. X. Goemans and D. P. Williamson, “Improved approximation algorithms
for maximum cut and satisfiability problems using semidefinite programming,”
Journal of Assoc. Comput. Mach. to appear. . A preliminary version appeared in
Proceedings of the 26th Annual ACM Symposium on Theory of Computing (1994)
422-431.



[6] C.Helmberg, S. Pdljak, F. Rendl and H. Wolkowicz, “Combining semidefinite and
polyhedral relaxation for integer programs,” Lecture note in Computer Science
538 (1995) 124-134.

[7] C. Helmberg, F. Rendl, R. J. Vanderbei and H. Wolkowicz, “An interior-point
method for semidefinite programming,” SIAM Journal on Optimization, to ap-
pear.

[8] D. E. Knuth, “The sandwich theorem,” FElectronic Journal of Combinatorics 1
(1995) 1-48.

[9] M. Kojima, S. Shindoh and S. Hara, “Interior-point methods for the monotone
semidefinite linear complementarity problems,” Research Report #282, Dept.
of Mathematical and Computing Sciences, Tokyo Institute of Technology, Oh-
Okayama, Meguro, Tokyo 152, Japan, April 1994, Revised April 1995.

[10] L. Lovéasz, “On the Shannon capacity of a graph,” IEEE Transactions on Infor-
mation Theory 25 (1979) 1-T7.

[11] L. Lovész and A. Schrijver, “Cones of matrices and set functions and 0-1 opti-
mization,” SIAM Journal on Optimization 1 (1991) 166-190.

[12] Ju. E. Nesterov and A. S. Nemirovskii, Interior Point Polynomial Methods in
Convex Programming: Theory and Applications (SIAM, Philadelphia, 1993).

13] S. Poljak, F. Rendl and H. Wolkowicz, “A recipe for semidefinite relaxation for
[ j p
(0,1)-quadratic programming,” Journal of Global Optimization 7 (1995) 51-73.

[14] N. Z. Shor, “Quadratic optimization problems,” Soviet Journal of Computer and
Systems Sciences 25 (1987) 1-11.

[15] N. Z. Shor, “Dual quadratic estimates in polynomial and boolean programming,”
Annals of Operations Research 25 (1990) 163-168.

[16] L. Vandenberghe and S. Boyd, “A primal-dual potential reduction method for
problems involving matrix inequalities,” Mathematical Programming 69 (1995)
205-236.

[17] L. Vandenberghe and S. Boyd, * Semidefinite Programming,” Informations Sys-
tems Laboratory, Stanford University, 1994.

67



