7 research outputs found

    Investigation of the performance of TDoA-based localization over LoRaWAN in theory and practice

    Get PDF
    Abstract The paper deals with the localization in a low-power wide-area-network (LPWAN) operating long-range wide-area-network (LoRaWAN) technology. The LoRaWAN is, today, one of the most widely used connectivity-enabling technologies for the battery-powered smart devices employed in a broad range of applications. Many of these applications either require or can benefit from the availability of geolocation information. The use of global positioning system (GPS) technology is restrained by the bad propagation of the signal when the device is hidden indoors, and by energy consumption such a receiver would require. Therefore, this paper focuses on an alternative solution implying the use of the information readily available in the LoRaWAN network and application of the time difference of arrival (TDoA) method for the passive geolocation of end-devices in the network. First, the limits of geolocation services in networks that use narrow-band communication channels are discussed, as well as the relevant challenges faced by the TDoA approach. Then, we select five classic TDoA algorithms and evaluate their performance using simulation. Based on these results, we select the two providing the best accuracy (i.e., Chan’s and Foy’s). These algorithms were tested by the field measurements, using the specially designed low-cost gateways and test devices to estimate their real-life performance

    On the performance of multi-gateway LoRaWAN deployments:an experimental study

    No full text
    Abstract A remarkable progress in the Low Power Wide Area Network (LPWAN) technologies over the recent years opens new opportunities for developing versatile massive Internet of Things (IoT) applications. In this paper, we focus on one of the most popular LPWAN technologies operating in the license-exempt frequency bands, named LoRaWAN. The key contribution of this study is our unique set of results obtained during an extensive measurement campaign conducted in the city of Brno, Czech Republic. During a three-months-period, the connectivity of a public Long Range Wide Area Network (LoRaWAN) with more than 20 gateways (GWs) was assessed at 231 test locations. This paper presents an analysis of the obtained results, aimed at capturing the effects related to the spatial diversity of the GW locations and the real-life multi-GW network operation with all its practical features. One of our findings is the fact that only for 47% tested locations the GW featuring the minimum geographical distance demonstrated the highest received signal strength and signal-to-noise ratio (SNR). Also, our results captured and characterized the variations in the received signal strength indicator (RSSI) and SNR as a function of the communication distance in an urban environment, and illustrated the distribution of the spreading factors (SFs) as a result of the adaptive data rate (ADR) algorithm operation in a real-life multi-GW deployment

    Communication performance of a real-life wide-area low-power network based on Sigfox technology

    Get PDF
    Abstract In this paper, we study real-world performance of Sigfox, which is one of the most mature Low-Power Wide-Area Network (LPWAN) technologies that operate in unlicensed frequency bands. During an extensive measurement campaign conducted over three months in the city of Brno, Czech Republic, we assessed the communication performance and the radio channel properties in 311 different test locations. We observed that despite the challenging natural landscape and urban environment of the test area, more than 94% of the packets sent were received successfully, with at least one packet delivered from 297 out of 311 tested locations. Our results also reported experiment-based radio channel and signal-to-noise characterization as well as provided insights into the efficiency of two crucial mechanisms used by Sigfox to improve the packet delivery — packet repetition and multi-gateway reception. Finally, we employed our experimental data to understand the efficiency of two non-fingerprint localization methods based on received signal strength indicator in a practical Sigfox network

    Testbed for LoRaWAN security:design and validation through man-in-the-middle attacks study

    Get PDF
    Abstract The low-power wide-area (LPWA) technologies, which enable cost and energy-efficient wireless connectivity for massive deployments of autonomous machines, have enabled and boosted the development of many new Internet of things (IoT) applications; however, the security of LPWA technologies in general, and specifically those operating in the license-free frequency bands, have received somewhat limited attention so far. This paper focuses specifically on the security and privacy aspects of one of the most popular license-free-band LPWA technologies, which is named LoRaWAN. The paper’s key contributions are the details of the design and experimental validation of a security-focused testbed, based on the combination of software-defined radio (SDR) and GNU Radio software with a standalone LoRaWAN transceiver. By implementing the two practical man-in-the-middle attacks (i.e., the replay and bit-flipping attacks through intercepting the over-the-air activation procedure by an external to the network attacker device), we demonstrate that the developed testbed enables practical experiments for on-air security in real-life conditions. This makes the designed testbed perspective for validating the novel security solutions and approaches and draws attention to some of the relevant security challenges extant in LoRaWAN

    Insights into the issue of deploying a private LoRaWAN

    No full text
    Abstract The last decade has transformed wireless access technologies and crystallized a new direction for the internet of things (IoT). The modern low-power wide-area network (LPWAN) technologies have been introduced to deliver connectivity for billions of devices while keeping the costs and consumption low, and the range of communication high. While the 5G (fifth generation mobile network) LPWAN-like radio technologies, namely NB-IoT (narrowband internet of things) and LTE-M (long-term evolution machine type communication) are emerging, the long-range wide-area network (LoRaWAN) remains extremely popular. One unique feature of this technology, which distinguishes it from the competitors, is the possibility of supporting both public and private network deployments. In this paper we focus on this aspect and deliver original results comparing the performance of the private and public LoRAWAN deployment options; these results should help understand the LoRaWAN technology and give a clear overview of the advantages and disadvantages of the private versus public approaches. Notably, we carry the comparison along the three dimensions: the communication performance, the security, and the cost analysis. The presented results illustratively demonstrate the differences of the two deployment approaches, and thus can support selection of the most efficient deployment option for a target application

    Energy attack in Lorawan:experimental validation

    No full text
    Abstract Myriads of new devices take their places around us every single day, making a decisive step towards bringing the concept of the Internet of Things (IoT) in reality. The Low Power Wide Area Networks (LPWANs) are today considered to be one of the most perspective connectivity enablers for the resource and traffic limited IoT. In this paper, we focus on one of the most widely used LPWAN technologies, named LoRaWAN. Departing from the traditional data-focused security attacks, in this study we investigate the robustness of LoRaWAN against energy (depletion) attacks. For many IoT devices, the energy is a limited and very valuable resource, and thus in the near future the device’s energy may become the target of an intentional attack. Therefore, in the paper, we first define and discuss the possible energy attack vectors, and then experimentally validate the feasibility of an energy attack over one of these vectors. Our results decisively show that energy attacks in LoRaWAN are possible and may cause the affected device to lose a substantial amount of energy. Specifically, depending on the device’s SF (Spreading Factor), the demonstrated attack increased the total energy consumption during a single communication event 36% to 576%. Importantly, the shown attack does not require the attacker to have any keys or other confidential data and can be carried against any LoRaWAN device. The presented results emphasize the importance of energy security for LPWANs in particular, and IoT in general

    On track of Sigfox confidentiality with end-to-end encryption

    No full text
    Abstract The last years brought many novel challenges for the Internet of Things (IoT). Low capital and operational expenditures, massive deployments of devices, reliability and security are among the most crucial ones. The recently introduced Low-power wide area (LPWA) technologies provide one possible way of addressing these challenges. In the current paper, we focus on one of the most mature LPWA technology, namely Sigfox. We provide a brief security assessment of this technology and highlight the main security imperfections. Notably, we also consider the recent changes introduced in the last revision of the Sigfox specification released in the fourth quarter of 2017. Importantly, this paper discusses the highlighted issues and compares three selected cryptographic encryption solutions (AES, ChaCha and OTP) in respect to the main IoT triad of performance, security and cost. We investigate the encryption solutions and characterize their energy consumption in a real-life implementation. The results herein presented are useful for understanding the cost of enabling security aspects and enable selecting the most efficient encryption protocol
    corecore