60 research outputs found

    Studies of syngas cleaning technologies suitable for power generation from biomass oil palm shells

    Get PDF
    The efficiency of the gas cleaning step is one of the fundamental steps to the successful operation of biomass gasification technologies for power generation. Catalytic cracking is selected as the hot gas cleaning technology for this research using zeolite HZSM-5 catalyst in order to reduce tar produced from palm shells gasification in the laboratory scale fixed bed gasifier. The catalyst load of 2, 5 and 10 weight % of the weight of palms shells has been tested in experiment. Gas chromatographic analysis of the tar produced has been conducted along with the study of biomass gasification index (BGI), emissions of CO, NO, and SO2. It is observed that the tar contains a high concentration of carbolic acid (5 to 8 volume %) in the gas in the range of oxygen to nitrogen flowrate ratio from 0.10 to 0.15 studied. The carbolic acid concentration decreases in the tar with the oxygen to nitrogen ratio increase.The overall heterocyclic aromatics in the tar content are comparable when operating with oxygen to nitrogen ratio of 0.12 and 0.15.The lowest concentration of carbolic acid has been achieved when 5 weight % of HZSM-5 catalyst is used with a reduction of 99% and 79% for oxygen to nitrogen ratio of 0.10 or 0.15 respectively when compared to the carbolic acid concentration without the presence of the catalyst. At the same time higher percentage of the catalyst results in less chemical compounds found in tar. Tar content increased as lower concentration of oxygen content in gas mixture or larger palm shells particle size was used.Lower CO emission produced when lower oxygen content in gas mixture was used. Oxygen to nitrogen ratio has the most significant effects on the NO production compared to palm shells particle size. Both oxygen to nitrogen ratios and palm shells particle size does not have any significant effects on the SO2 production. Higher BGI could be obtained if larger palm shells particle sizes are used in this system. Suitable correlations for the tar removal cleanup for syngas derived from biomass oil palm shells at different operating parameters when using HZSM-5 catalyst have been developed from the interpolation of the experimental data obtained

    Thermogravimetric analysis of face mask waste: Kinetic analysis via iso-conversional methods

    Get PDF
    The surge of face mask waste in response to the global pandemic has proven to be a liability to the environment. Microfibers from plastic constituents of the face mask would cause microplastic pollution in the water bodies. Fortunately, these waste could be converted into renewable source of energy via thermochemical method, i.e. pyrolysis. However, the studies on the thermal decomposition of face masks and their kinetic mechanisms are not well-established. The aim of this paper focuses on the prospects of pyrolysis at low to high heating rates ranging from 10 °C min-1 to 100 °C min-1, to cater for the slow pyrolysis and fast pyrolysis modes. Following this, the thermal degradation behaviour of the face mask waste was studied via thermogravimetric analysis which determined the single peak temperature degradation range at 218 to 424 °C at 10 °C min-1, and maximum degradation rate was determined at 172.51 wt.% min-1 at 520 °C, with heating rate of 100 °C min-1. Flynn-Wall-Ozawa (FWO) and Starink method was employed to determine the average activation energy and average pre-exponential factor of the pyrolysis process of face mask waste. i.e., 41.31 kJ mol-1 and 0.9965, 10.43 kJ mol-1 and 0.9901 for FWO and Starink method, respectively

    Catalytic thermal degradation of Chlorella Vulgaris: Evolving deep neural networks for optimization

    Get PDF
    The aim of this study is to identify the optimum thermal conversion of Chlorella vulgaris with neuro-evolutionary approach. A Progressive Depth Swarm-Evolution (PDSE) neuro-evolutionary approach is proposed to model the Thermogravimetric analysis (TGA) data of catalytic thermal degradation of Chlorella vulgaris. Results showed that the proposed method can generate predictions which are more accurate compared to other conventional approaches (>90% lower in Root Mean Square Error (RMSE) and Mean Bias Error (MBE)). In addition, Simulated Annealing is proposed to determine the optimal operating conditions for microalgae conversion from multiple trained ANN. The predicted optimum conditions were reaction temperature of 900.0 °C, heating rate of 5.0 °C/min with the presence of HZSM-5 zeolite catalyst to obtain 88.3% of Chlorella vulgaris conversion

    Catalytic thermal degradation of Chlorella Vulgaris: Evolving deep neural networks for optimization

    Get PDF
    The aim of this study is to identify the optimum thermal conversion of Chlorella vulgaris with neuro-evolutionary approach. A Progressive Depth Swarm-Evolution (PDSE) neuro-evolutionary approach is proposed to model the Thermogravimetric analysis (TGA) data of catalytic thermal degradation of Chlorella vulgaris. Results showed that the proposed method can generate predictions which are more accurate compared to other conventional approaches (>90% lower in Root Mean Square Error (RMSE) and Mean Bias Error (MBE)). In addition, Simulated Annealing is proposed to determine the optimal operating conditions for microalgae conversion from multiple trained ANN. The predicted optimum conditions were reaction temperature of 900.0 °C, heating rate of 5.0 °C/min with the presence of HZSM-5 zeolite catalyst to obtain 88.3% of Chlorella vulgaris conversion

    Syngas-Enriched hydrogen production via catalytic gasification of water hyacinth using renewable palm kernel shell hydrochar

    Get PDF
    Syngas produced from biomass gasification has emerged as a highly promising substitute for conventional fossil fuel, catering to various industrial applications while ensuring minimal greenhouse gas emissions. Water hyacinth (WH) has been a major concern due to its invasive nature and uncontrollable growth which impedes aquatic growth and urban management. Fortunately, WH is a potential biomass feedstock due to the comparable cellulose and hemicellulose contents alongside high carbon content and high calorific value which reflects good biofuel properties. Therefore, this study aims to investigate the conversion of WH biomass via catalytic air gasification for syngas-enriched hydrogen production using palm kernel shell hydrochar (PKSH). A parametric study was conducted in a lab-scale fixed-bed downdraft gasifier based on the response surface methodology coupled with Box-Behnken design (RSM-BBD). The combined interaction effects of the influencing parameters investigated are temperature (600–800 °C), biomass particle size (2–6 mm), catalyst loading (0–10 wt%), and air flow rate (1–3 L/min). Temperature was revealed to be the primary factor with significant influence on the H2 and CO output. Maximum syngas (30.09 vol%) compositions of 11.14 vol% H2 and 18.95 vol% CO were obtained at 800 °C with a particle size of 6 mm and air flow rate of 2 L/min alongside 5 wt% PKSH catalyst loading

    A review on natural based deep eutectic solvents (NADESs): fundamentals and potential applications in removing heavy metals from soil

    Get PDF
    Natural based deep eutectic solvent (NADES) is a promising green solvent to replace the conventional soil washing solvent due to the environmental benign properties such as low toxicity, high biodegradability, high polarity or hydrophilicity, and low cost of fabrication process. The application of NADES is intensively studied in the extraction of organic compounds or natural products from vegetations or organic matters. Conversely, the use of the solvent in removing heavy metals from soil is severely lacking. This review focuses on the potential application of NADES as a soil washing agent to remove heavy metal contaminants. Hydrophilicity is an important feature of a NADES to be used as a soil washing solvent. In this context, choline chloride is often used as hydrogen bond acceptor (HBA) whereby choline chloride based NADESs showed excellent performance in the extraction of various solutes in the past studies. The nature of NADES along with its chemistry, preparation and designing methods as well as potential applications were comprehensively reviewed. Subsequently, related studies on choline chloride-based NADES in heavy metal polluted soil remediation were also reviewed. Potential applications in removing other soil contaminants as well as the limitations of NADES were discussed based on the current advancements of soil washing and future research directions were also proposed

    Sustainable Biomass-to-Energy Transformation : Choline Chloride Based Deep Eutectic Solvent for Lignin Extraction and Liquefaction

    Get PDF
    Biomass is often renowned as one of the inexpensive and largest sources of non-depleting energy in the world, attributed to its great potential for continuous and sustainable supply of energy in the form of biofuels and various value-added products. With the increasing demand to preserve the environment, the use of green solvents, such as deep eutectic solvents (DESs), is desirable, given their capability to reduce the generation of hazardous substances. In this work, choline chloride based DESs have been used to extract lignin from biomass. The structure and thermal stability of the extracted lignin are analysed using Fourier-transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA), respectively. FT-IR spectra revealed that chemical properties of lignin were determined through absorbance peaks corresponding to hydroxyl and C-H stretching, as well as the presence of carbonyl moieties and phenolic groups. TGA analysis of lignin showed weight loss peaks at 66 °C, 256 °C, and 319 °C, with major weight loss at 200 - 350 °C due to lignin degradation and release of monomeric phenols, resulting in a final residue consisting of non-volatile solids associated with condensed aromatic structures and lignin ash at 740 °C. The extracted lignin was then subjected to subcritical water-supercritical CO2 hydrothermal liquefaction (HTL) and converted into bio-oil. In this context, HTL proves its benefits by providing the highest yield of 77.41 % using optimum parameters of lignin-to-water ratio (1:5), pressure (20 MPa), temperature (275 °C) and time (60 min). The functional groups of bio-oil derived from the extracted lignin were analysed using FT-IR, which proves the functional groups (phenols, carboxylic acid, ketones, carboxylic acid, esters and aromatic groups) present in the bio-oil. Detailed information regarding the HTL of lignin derived from biomass, which circumvents the need for energy-intensive drying procedures, is critical in mitigating the challenges posed by the abundance of biomass residues

    Uncertainty estimation approach in catalytic fast pyrolysis of rice husk : Thermal degradation, kinetic and thermodynamic parameters study

    Get PDF
    The aim of this study was to understand the influence of catalyst in thermal degradation behavior of rice husk (RH) in catalytic fast pyrolysis (CFP) process. An iso-conversional Kissinger kinetic model was introduced into this study to understand the activation energy (EA), pre-exponential value (A), Enthalpy (ΔH), Entropy (ΔS) and Gibb’s energy (ΔG) of non-catalytic fast pyrolysis (NCFP) and CFP of RH. The study revealed that the addition of natural zeolite catalyst enhanced the rate of devolatilization and decomposition of RH associated with lowest EA value (153.10 kJ/mol) compared to other NCFP and CFP using nickel catalyst. Lastly, an uncertainty estimation was applied on the best fit non-linear regression model (MNLR) to identify the explanatory variables. The finding showed that it had the highest probability to obtain 73.8–74.0% mass loss in CFP of rice husk using natural zeolite catalyst

    Life-cycle assessment of hydrogen production via catalytic gasification of wheat straw in the presence of straw derived biochar catalyst

    Get PDF
    The environmental footprints of H2 production via catalytic gasification of wheat straw using straw-derived biochar catalysts were examined. The functional unit of 1 kg of H2 was adopted in the system boundaries, which includes 5 processes namely biomass collection and pre-treatment units (P1), biochar catalyst preparation using fast pyrolysis unit (P2), two-stage pyrolysis-gasification unit (P3), products separation unit (P4), and H2 distribution to downstream plants (P5). Based on the life-cycle assessment, the hot spots in this process were identified, the sequence was as follows: P4 > P2 > P1 > P3 > P5. The end-point impacts score for the process was found to be 93.4017 mPt. From benchmarking analysis, the proposed straw-derived biochar catalyst was capable of offering almost similar catalytic performance with other metal-based catalysts with a lower environmental impact
    • …
    corecore