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Abstract 

The aim of this study is to identify the optimum thermal conversion of Chlorella Vulgaris with 

neuro-evolutionary approach. A Progressive Depth Swarm-Evolution (PDSE) neuro-evolutionary 

approach is proposed to model the Thermogravimetric analysis (TGA) data of Catalytic Thermal 

Degradation of Chlorella Vulgaris. Results showed that the proposed method can generate 

predictions which are more accurate compared to other conventional approaches (> 90 % lower in 

Root Mean Square Error (RMSE) and Mean Bias Error (MBE)). In addition, Simulated Annealing 

is proposed to determine the optimal operating conditions for microalgae conversion from multiple 

trained ANN. The predicted optimum conditions were reaction temperature of 900.0 oC, heating 

rate of 5.0 oC/min with the presence of HZSM-5 zeolite catalyst to obtain 88.3 % of Chlorella 

Vulgaris conversion. 

Keywords 

Microalgae, Thermogravimetric Analysis, Artificial Neuron Network, Particle Swarm 

Optimization, Simulated Annealing 

1. Introduction 

The global demand of energy supply is increasing rapidly due to population and economic growth 

(OPEC, 2019). In 2018, the global energy demand has an exceptional growth rate of 2.3 % which 

was further resulting in a 1.7 % increment of global carbon emissions (IEA, 2019). This strikes a 

challenge to achieve a balance between global warming and sustainable energy supply. Thus, many 
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countries around the world are seeking for alternative options to reduce the dependency on fossil 

fuel (Adenle et al., 2013).  

Biofuel is a potential energy source that can be used as an alternative to fossil fuel (Milano et al., 

2016). In the last decades, the third generation (3G) biofuel which is derived from microalgae have 

received great attention since first generation (1G) and second generation (2G) biofuels contain 

food security issue (Mohr and Raman, 2013) and sustainability concern (Sun et al., 2019) 

respectively. In general, the main advantages of using microalgae as biofuel production feedstock 

encompasses of easy cultivation; higher growth rates and productivity; attractive oil yield; and 

lower carbon emissions (Mata et al., 2010; Costa and Morais, 2011).  

Among the various technologies established for converting microalgae to biofuels (e.g., pyrolysis, 

hydrothermal carbonization, and gasification (Chan et al., 2019)), catalytic pyrolysis is one of the 

most preferable technologies (Zainan et al., 2018). A series of catalysts have been studied 

thoroughly on their ability to break large hydrocarbon aromatic compounds of biomass into smaller 

hydrocarbon compound via decarboxylation (Mettler et al., 2014), dehydration (Barnard and 

Hughes, 1960) and deoxygenation (Raymundo et al., 2019) reactions. Among all the catalysts, 

HZSM-5 zeolite and CaO catalysts have driven more attention due to their performance in 

upgrading the bio-oil quality and enhance the yield of bio-oil (Zhang et al., 2019). HZSM-5 zeolite 

is highly selective for aromatics and effective in deoxygenation of oxygenated compounds to form 

olefins and phenolics (Yang et al., 2018). Meanwhile, CaO has been introduced into pyrolysis 

process as an alkali metal oxide catalyst. It is normally extracted from limestone and eggshell 

waste due to highly abundant, high CaO composition, and relatively low cost (Gan et al., 2018).  

Thermogravimetric analysis (TGA) is used to investigate the thermal degradation of biomass by 

measuring the rate of weight loss as a function of temperature and time. Gai et al. (2013) had 

investigated the kinetic parameters of Chlorella pyrenoidosa (CP) and Spirulina plantensis (SP) 

microalgae. They reported the average activation energy of CP and SP were 77.02 and 91.56 

kJ/mol. Besides, Kim et al. (2012) reported on the lumped kinetic model using Saccharina 

Japonica as feedstock. The average activation energy obtained was in the range of 102.5-269.7 

kJ/mol. Most works are focusing on the kinetic parameters of the chemical mechanism of the 

thermal decomposition of microalgae. There is still limited literature on the optimization study on 

the mass loss percentage (MLP) of thermal degradation of biomass. 

Artificial neural network (ANN) have been recently applied to model the thermochemical 

performances of biomass pyrolysis due to its credibility in addressing complex nonlinear problems. 

In the early of 21st century, Abbas et al. (2003) had proposed the use of neural network model in 

predicting the devolatilization performances of coal and biomass. The computing efficiency of the 

model was proven to be more attractive compared to other existing tools Conesa et al. (2004) then 

developed a predictive model using a multilayer ANN, to estimate the thermal decomposition of 

cellulose, lignin and polyethene. This research has been extended to study the thermochemical 

performance of various feedstocks via pyrolysis (e.g., keratin biopolymer (Fazilat et al., 2012); 

sewage sludge (Naqvi et al., 2018), etc.). The popularization of ANN being used to analyze 

experiments datasets from TGA systems is mainly due to (i) the large size of the datasets from 

TGA systems (> 10,000 data per run); (ii) the complex non-linear nature of thermal conversion 
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that requires advanced analytics for prediction and modeling; (iii) fully automatic modeling 

procedure that can be achieved by ANN. 

Conventional practices in training neural network for the application of TGA analysis considers 

single-hidden layer neural networks (Abbas et al., 2003).  Although researchers acknowledge that 

the consideration of better hyperparameters for ANN is important in TGA analysis (Mayol et al., 

2018), hyperparameter optimization is rarely carried out for the applications of thermal analysis. 

Besides, the current norm for researchers is to use trial and error methods to find an acceptable 

ANN topology. This is demonstrated in a recent work of Naqvi et al. (2018), which tested neural 

network with lesser than 3 hidden layers. Nevertheless, Mhaskar and Poggio (2016) highlighted 

the importance of deeper networks from an approximation theory perspective. Another issue is on 

the activation functions of ANN, commonly one or only a few types (Mayol et al., 2018) of 

activation function are considered by trial and error for the application of TGA. From a 

computational intelligence perspective, a good methodology to achieve optimality instead of trial-

and-error is by using Neuro-evolution (Stanley and Miikkulainen, 2002). This method is very 

popular in the fields of Deep Learning because natural brains themselves are the products of bio-

evolutionary processes, and its implementation enables large-scale computing (Stanley et al., 

2019). Based on the results obtained by the researchers from Deep Mind (Jaderberg et al., 2017) 

and OpenAI (Salimans et al., 2017), it can be confirmed that Neuro-evolution is highly effective 

and implementable even when considering computational scalability. 

To-date, none of the work has utilized this approach for the purpose of TGA thermal analysis. 

Thus, the objective of this work is to incorporate the use ofNeuro-evolutionary approach in the 

applications of analyzing TGA experimentation data. The increase in accuracy of the neural 

network prediction has allowed for a more indicative optimization study on the ANN model. 

However, the optimization study was not performed in the previous works (e.g., Naqvi et al. (2018) 

and Conesa et al. (2004)) mainly due to the complex structure of ANN, which makes conventional 

optimization strategies non-straightforward. To address this issue, this work proposes the use of 

Simulated Annealing (Metropolis et al., 1953), a metaheuristic algorithm, to search for the optimal 

thermal conditions for microalgae conversion from multiple trained ANN. 

 

2. Materials and methods 

2.1 Experimental description 

The microalgae biomass Chlorella vulgaris (C. vulgaris) was obtained from Centre for Biofuel 

and Biochemical, Universiti Teknologi PETRONAS (UTP), Malaysia. The biomass was dried and 

sieved to a particle size less than 200 µm. Moreover, limestone and HZSM-5 zeolite catalysts were 

obtained from Calrock Sdn. Bhd. and Sigma-Aldrich, Malaysia, respectively. Both catalysts 

undergo pre-treatment such as the limestone was heated at temperature 900.0 °C for 4 hours to 

ensure all the CaCO3 in limestone was fully converted to CaO whereas HZSM-5 zeolite catalyst 

was calcined at 550.0 °C for 3 hours to activate the Bronsted acid sites. After that, the C. vulgaris 

samples were analyzed using thermogravimetric analyzer (TGA-DSC 1, Mettler Toledo) and 

LECO CHNS-932 elemental analyzer, respectively to determine the physical and chemical 
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properties of the samples. From the ultimate analysis of C. vulgaris, the carbon, hydrogen, 

nitrogen, sulphur and oxygen contents were 42.6 wt%, 8.2 wt%, 1.3 wt%, 0.8 wt% and 47.1 wt%, 

respectively. Whereas, the moisture, volatile matter, fixed carbon and ash content of C. vulgaris 

showed in the proximate analysis were 8.3 wt%, 59.2 wt%, 15.8 wt% and 16.7 wt%, respectively. 

The pyrolysis studies were performed using five different heating rates of 10, 20, 30, 50 and 

100 °C/min, respectively using the TGA equipment. Firstly, 100 ml/min of nitrogen gas (N2) 

supply was introduced into the TGA for 10 min to avoid unwanted oxidation reaction of the 

biomass sample. After that, 10 mg of C. vulgaris biomass was introduced into the TGA and heated 

from 50.0 °C to 900.0 °C under non-isothermal conditions. Meanwhile, for catalytic pyrolysis 

process, the catalyst (e.g. limestone and HZSM-5 zeolite) with a ratio of 1:10 to the biomass was 

mixed homogenous with the C. vulgaris and loaded into the system. All experiments were carried 

out three times to ensure the reliability of the results. 

2.2 Neural network generation 

The experimentation data consists of heating rate (°C/min), heat flow (mW) and reactor 

temperature (°C) while providing results on the mass of microalgae remaining after the reaction. 

Three cases of experimentation were carried out which is the case with no catalyst, with limestone 

catalyst and HZSM-5 zeolite catalyst. The three separate datasets each containing 11,205 data 

points, giving a total of 33,615 data points. Each dataset was split with a ratio of 8:2 for training 

and validation. The ANN that was considered in this work is a fully connected neural network with 

a variable depth as shown in Fig. 1. 
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Fig. 1: Structure of fully connected neural network with variable depth considered. 

From Ding et al. (2011), neuro-evolutionary strategies can be applied on the weights of ANN, 

architecture of ANN, and the activation function of ANN. However, due to the formulation of 

ANN being mathematically differentiable, the use of stochastic gradient descent (SGD) algorithms 

such as Adam (Kingma and Ba, 2014) is more suitable to be used on directly training the weights 

of ANN (Stanley et al., 2019) as it can utilize the gradient of the ANN for more efficient weight 

updates. Contrarily, the search for neural architecture and activation functions can be learned using 

Neuro-evolution approaches on top of SGD-based weight training (Floreano et al., 2008). 

Considering the computational costs of Neuro-evolution algorithms, this paper proposes an 

algorithm called Progressive Depth Swarm-Evolution (PDSE) that is based on the efficient and 

robust modified Particle Swarm Optimization (PSO) algorithm (Shi and Eberhart, 1998). PDSE 

uses a variable length embedding for the population by progressively searching from shallow 

neural networks to deeper neural networks. Furthermore, the computational costs of this neuro-

evolution algorithm can be effectively bounded by allocating a maximum search cost for each 

number of depths of ANN. The details of the algorithm are presented as pseudocode in Fig. 2 

 

Fig. 2: Pseudo-code for Novel Progressive Depth Swarm-Evolution (PDSE) 

In this work, a particle-to-generation ratio of 2:5 and maximum search cost of 1000 were used. 

The PSO algorithm is extended from the EvoOpt library (Teng, 2019). For this application, the 

PDSE algorithm was used to search for ANN of depth 2 to 10 with fitness set to its validation loss. 

For the training of the weights in ANN, the popular stochastic gradient descent-based algorithm, 

Adam was used with batch size of 128 (Kingma and Ba, 2014). To prevent overfitting of the ANN, 

early stopping technique was implemented with a setting of minimum delta of 0.0001 and patience 

of 3. 

The metric that is being used for training (loss) is the Mean Squared Error (MAE) as it provides a 

globally differentiable loss function for smooth training. For the purpose of benchmarking, 3 

additional metrics were used, which are Root Mean Squared Error (RMSE), Mean Bias Error 

(MBE) and the coefficient of determination (R2): 

𝑅𝑀𝑆𝐸 = √∑ (𝑦�̂�−𝑦𝑡)2𝑁𝑡=1 𝑁             (1) 
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𝑀𝑆𝐸 = ∑ (𝑦�̂�−𝑦𝑡)2𝑁𝑡=1 𝑁              (2) 

𝑀𝐵𝐸 = ∑ (𝑦�̂�−𝑦𝑡)𝑁𝑡=1 𝑁             (3) 

𝑅2 = 1 − ∑ (𝑦�̂�−𝑦𝑡)2𝑁𝑡=1∑ (𝑦𝑡̅̅ ̅−𝑦𝑡)2𝑁𝑡=1             (4) 

where 𝑦𝑡 is actual data, 𝑦�̂� is predicted data, 𝑦𝑡 is the mean of actual data, while 𝑁 is the total 

number of actual data. 

2.3 Bi-layer optimization 

ANN serves as a good predictive regression tool. However, an optimization tool has to be deployed 

on the black-box ANN in order to find the predicted optimal thermal conditions and the most 

suitable catalyst of thermal degradation of microalgae. This work formulates this optimization 

problem into a bi-level optimization problem, where the main problem is to minimize the mass of 

the remaining microalgae after the reaction, Y1 enabling efficient conversion. The outer problem 

is to minimize the conditions of the reaction to standard conditions and achieve better energy 

efficiency. The formulation of this bi-level optimization problem is shown in Eqs. (4) and (5): min 𝑌1   

Subject to 𝑋𝑖,𝐿 ≤ 𝑋𝑖 ≤ 𝑋𝑖,𝐻   ∀𝑖 ∈ 1,2,3          (4) min  |𝑋1| + |𝑋2| + |𝑋3 − 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡|      
Subject to 𝑋𝑖,𝐿 ≤ 𝑋𝑖 ≤ 𝑋𝑖,𝐻  ∩  𝑌1 = 𝑌1∗  ∀𝑖 ∈ 1,2,3             (5) 

where X1, X2, X3 are the rate of change in temperature, heat flow and the reactor temperature 

respectively. Y1* is the optimal mass of remaining microalgae from the main problem. For this 

work, the constraints used are 5.0 to 100.0 °C/min for X1, 0.0 mW to 300.0 mW for X2, and a 

varying range of 50.0 °C interval for X3. The ambient temperature is taken as 25.0 °C. 

In order to solve the optimization problem, this work uses Simulated Annealing, which is a stable 

and well-known metaheuristics algorithm. The choice of this metaheuristic algorithm is due to 

Simulated Annealing being able to find global optimum points by escaping local minima and 

guarantees statistically robust results in short computation time (Goffe et al., 1994). The 

advantages of Simulated Annealing are particularly useful for this application, where the trained 

ANN is found to have multiple minimum points and a complex surface. The Simulated Annealing 

algorithm has its inspiration from metallurgical annealing, which involves heating and cooling of 

material to reduce their defects. This algorithm can be presented in five simple steps: 

Step 1: Generate initial solution randomly. 

Step 2: Find a neighbor solution for each of the initial solutions. 

Step 3: Stochastically choose a solution between the initial and neighbour solution based 

on the probability, p = exp(-(Fitnessneighbour-Fitnessinitial)/Temperature). 

Step 4: Decrease the temperature. 
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Step 5: Repeat from step 2 if stop condition is not met. 

For the application of optimizing ANN trained on TGA experimentation data, both the inner and 

outer problem uses a population size of 30 and a maximum generation of 50. This optimization 

procedure ensures that the optimal thermal conditions of the microalgae can be found together with 

the recommended catalyst. 

3. Results and discussions 

3.1 TG-DTG analysis of C. vulgaris 

The thermal degradation profiles of thermogravimetry (TG) and derivative thermogravimetry 

(DTG) curves of C. vulgaris with and without the presence of HZSM-5 zeolite and limestone 

catalyst are shown in Fig. 3. The TGA curves were used to analyze the degradation profile of the 

samples at different temperature stages. Meanwhile, the DTG curves were used to determine the 

temperature in which the samples undergo the maximum degradation and it was divided into three 

main volatilization stages namely stage I, stage II and stage III. The first degradation stage (Stage 

I) of C. vulgaris occurred from 50.0 ºC to 190.0 ºC was due to the intrinsic breakdown of lipids 

and proteins as well as the removal of moisture in the microalgae cells. Then, the second 

degradation stage (Stage II) started at 190.0 ºC to 600.0 ºC (Bach et al., 2017). A significant mass 

loss of C. vulgaris was observed in this stage as it has the highest maximum degradation as shown 

in the DTG curve. This phenomenon was due to the degradation of the organic compounds in the 

cell such as protein, carbohydrate and lipids. Lastly, the third degradation stage (Stage III) 

observed at higher temperature than 600.0 ºC. This stage is the final breakdown of lipids which 

associated with the breakdown of the fatty acid chains (FFA) in the cell (Figueira et al., 2015). The 

leftover solid residues are the undecomposed ash. 

 

Fig. 3: TGA and DTG curves of (a) non-catalytic degradation of C. vulgaris, (b) catalytic 

degradation of C. vulgaris using limestone catalyst, (c) catalytic degradation of C. vulgaris using 

HZSM-5 zeolite. 

Table 1 shows the mass loss percentage for both catalytic and non-catalytic thermal degradation 

at different heating rate ranging from 10.0 ºC/min to 100.0 ºC/min. Highest average mass loss 

percentage was obtained in catalytic thermal degradation of C. vulgaris using limestone, followed 

by catalytic thermal degradation of C. vulgaris using HZSM-5 zeolite and non-catalytic thermal 
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degradation of C. vulgaris. This phenomenon can be explained through the base catalytic effect of 

CaO metal oxide element in limestone. Previous study has reported that the addition of base 

catalyst can improve the quality and yield of the biomass pyrolysis oil. CaO can be used as an 

absorber or catalyst to enhance the efficiency of the process as well as capture the CO2 produced 

and convert it to CaCO3.  This will further reduce the tar formation and enhance the quality of 

biofuel production by converting long hydrocarbon chains to short hydrocarbon chains fuel (Chen 

et al., 2019).  

 

Table 1: Mass loss during non-catalytic and catalytic thermal decomposition of C. vulgaris using 

HZSM-5 zeolite and limestone catalyst. 

 Heating Rate 

(β, °C/min) 

Tinitial 

(°C) 

Tfinal 

(°C) 

Tmax 

 (°C) 

Mass loss 

(%) 

C. vulgaris 

(without catalyst) 

10 140.34 553.97 247.80 86.3 

20 154.59 565.64 254.70 76.11 

30 160.42 578.58 255.70 72.87 

50 173.94 596.09 268.77 69.41 

100 189.60 619.41 272.54 67.42 

Average - 163.78 582.74 259.90 74.42 

C. vulgaris –  10 157.94 533.10 251.93 86.68 

HZSM-5 zeolite 20 173.15 562.11 264.55 80.47 

 30 183.07 596.11 266.39 79.17 

 50 191.96 605.09 274.52 75.17 

 100 210.59 620.55 281.02 74.17 

Average - 183.34 583.39 267.68 79.13 

C. vulgaris –  10 154.05 554.05 264.49 88.58 

Limestone  20 173.94 562.16 300.66 79.97 

 30 178.53 576.21 307.24 77.47 

 50 199.23 593.39 322.59 76.87 

 100 215.94 609.33 324.10 74.67 

Average - 184.34 579.03 303.82 79.51 
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3.2 Training and Validation of ANN 

The actual optimum conditions of the thermal decomposition process cannot be determined simply 

based on Fig. 3. Therefore, this work employs the TG data to a neural network and determine the 

optimal condition by optimizes the outputs of the neural network instead. Using the PDSE 

algorithm, a total of 30,000 ANN with different activation function and topologies were evaluated. 

A total of 11 activation functions are considered, which includes softmax, exponential linear unit 

(elu), scaled exponential linear unit (selu), softplus, softsign, rectified linear unit (ReLu), 

hyperbolic tangent (tanh), sigmoid, hard sigmoid, exponential (Exp) and linear functions. One of 

the advantages of the PDSE algorithm is that evolution can easily be parallelized or distributed 

across multiple computation machines with ease. In this work, the training was distributed over 3 

machines with Intel(R) Core (TM) i5-4460, i5-8250 and i7-6700HQ with NVIDIA GeForce GTX 

950M. The training time took approximately 12 hours in total. Referring to Fig. 4(a) to 4(c) the 

PDSE algorithm steadily reduced the loss of the ANN with best neural architecture on extra 

evaluated ANNs. The algorithm has shown success in achieving optimality within a reasonable 

context for every single case of catalyst and depth of ANN. This demonstrates the robustness of 

the algorithm in obtaining an optimal neural architecture. 

 

 
Fig. 4: Training and Validation of ANN (a) non-catalytic degradation of  C. vulgaris, (b) catalytic 

degradation of C. vulgaris using HZSM-5 zeolite catalyst, (c) catalytic degradation of C. vulgaris 

using limestone catalyst dataset; Accuracy validation of ANN by (d) Mean Squared Error, (e) 

Mean Bias Error, (f) R-squared value; Predictions against (g) experimental data for non-catalytic 

testing, (h) experimental data for zeolite testing, (i) experimental for limestone testing. 
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From Fig. 4(d), it can be observed that there is an overall trend of improvement of loss (MSE) until 

a specific depth, and then the loss increases giving a “U” shaped trend. This phenomenon is due 

to the limitations of computational power (costs) in a larger search space as constrained by the 

maximum search costs in the PDSE algorithm. It is worth mentioning that the maximum search 

cost is set to reflect an acceptable computation time for the algorithm, and hence it is representative 

of the machine’s computation power. With a more powerful computational machine, “maximum 
search cost” within the PDSE algorithm can be improved. Hence, the algorithm can more 

effectively exploit better architectures of neural network with the same depth. The authors also 

highlight that the problem of evolving neural networks faces the exploitation-exploration dilemma 

(Tan et al., 2009) where computation power and time is fixed, and search quality (exploitation) is 

controlled by “maximum search costs” while search area (exploration) is controlled by the range 
of network’s depth searched. Nevertheless, referring to Fig. 4(e) and 4(f), the PDSE algorithm has 

found very convincing neural architecture for all cases and depths with MBE overall between -

0.0050 to 0.0050 and R-squared overall above 0.9950. Note that the predictions made by the model 

against the experimental data were shown in Figure 4(g) to 4(h). 

From Fig. 5, the prediction space of each evolutionary neural network can be observed to be 

relatively smooth with no sudden disconnections which infer that the networks are well trained 

with low chance of overfitting. For the experiment of limestone catalyst, PDSE produced a neural 

network with a depth of 3, having a topology of [173, 81, 1] and activation function of [ReLU, 

ReLU, Exp]. Non-catalytic experiment required a neural network with deeper depth of 5, topology 

of [512, 282, 68, 52, 1] and activation function of [tanh, elu, softmax, Relu, Exp]. A very 

interesting phenomenon in this topology is the evolution of a softmax function which re-

normalized the weights in the middle of the neural network, leading to better performances. In the 

case of HZSM-5 zeolite catalytic experiment, the neural architecture is found to be [348, 214, 1] 

and activation of [Exp, Linear, Hard Sigmoid]. 
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Fig. 5: Neural architecture by PDSE and prediction space (contour represents mass remaining). 

The best obtained validation metrics of the trained evolutionary neural networks are tabularized in 

Table 2. Validation RMSE of all experiments are simultaneously below 0.0075 (i.e., 0.0071 for 

the case using limestone as catalyst; 0.0075 for the case without using catalyst; 0.0050 for the case 

using HZSM-5 zeolite catalyst), demonstrating the robustness in the evolutionary neural network 

model. Furthermore, validation MBE were all smaller than a magnitude of 0.0026 (i.e., -0.0007 

for the case using limestone as catalyst; -0.0010 for the case without using catalyst; -0.0026 for 

the case using HZSM-5 zeolite catalyst), this shows that the model is not biased towards a certain 

effect of association. It is also worth pointing out that the R2 metric does not reflect the real 

performance of models when the values of two models are close (e.g. 0.9991 and 0.9996). A 

popular example to demonstrate this is when the predicted value is a dataset of [3,4,5] and actual 

values are [1,2,3], the R2 value is 1.0 but the average error is 2. Alexander et al. (2015) also 

observed this phenomenon and encouraged the use of error metrics over R2. Nevertheless, all 

models obtained validation R2 value above 0.9990 (i.e., 0.9993 for the case using limestone as 

catalyst; 0.9992 for the case without using catalyst; 0.9996 for the case using HZSM-5 zeolite 

catalyst).  
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To underline the performance of evolutionary neural networks within the TGA modelling 

ecosystem, we state the performances of the models within some related works. Firstly, a recent 

work from Xie et al. (2018) tested Radial Basis Function Network (RBFN) and Bayesian 

Regularized Network (BRN) modelling on the thermal analysis of textile dyeing sludge and 

pomelo peel. In the work, RBFN attained 0.8506 RMSE and 0.9989 R2 while BRN attained 0.3277 

RMSE and 0.9989 R2. Buyukada (2016) also used Multi-Layered Perceptrons (MLP) to model 

TGA analysis of peanut hull and coal blend, giving a result of 1.5678 RMSE, 0.0501 MBE and 

0.9999 R2. For the feedstock of hazelnut husks and lignite coal, Yıldız et al. (2016) also obtained 

a result of 0.6240 RMSE, 0.4840 MBE and 0.9994 R2 using MLP model. It is also worth pointing 

out that previous works related to the modelling of C. Vulgaris attained 0.9000 to 0.9800 regression 

R2 values using Kissinger-Akahira-Sunose (KAS) model and 0.9180 to 0.9490 regression R2 

values using Flynn-Wall-Ozawa (FWO) model (Figueira et al., 2015). Considering a mixed 

feedstock of C. Vulgaris, wood and polypropylene, Azizi et al. (2017) obtained 0.6899 to 0.9906 

regression R2 values with KAS model and 0.7336 to 0.9910 regression R2 values with FWO 

model. All previous work stated had provided admirable contribution to the fields of 

thermogravimetric analysis and can be considered as the current state-of-art. Contrarily, it is clear 

that our modelling technique achieved results with two order of magnitude better in RMSE and at 

least one order of magnitude better in MBE than the current state-of-art results. 

 

3.3 Optimized results using Simulated Annealing method 

The bi-level optimization by Simulated Annealing to find an optimum thermal condition for the 

conversion of C. vulgaris took 27 minutes on a machine with Intel(R) Core(TM) i5-8250. In 

general, the Simulated Annealing algorithm performs well with increasing fitness on new 

generations within the algorithm. Fig. 6(a) is taken as an example (temperature range from 

700.0 °C to 750.0 °C), the averaged fitness within the population was also steadily increasing, 

showing that searching agents within the population are gradually improving their search solution 

on average. The optimum conditions were found in generation 41. However, the algorithm was 

allowed to run until generation 100 for confirmation of optimality. At higher number of 

generations, the mass remaining fraction was already quite stable, attaining good values below 0.2. 

For other temperature ranges, very similar phenomena were observed, and authors think it is trivial 

to present similar figures. Overall, the Simulated Annealing algorithm shows good improvement 

of mass remaining (in mass fraction), while consistently have its population of searchers move to 

a better solution on average. This shows that an optimal point is statistically guaranteed to be 

found. 
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Fig. 6: Optimization by simulated annealing (a) example of convergence curve at 700°C to 750 °C, 

(b) optimal conversion against reactor temperature. 

Referring to the Pareto curve shown in Fig. 6(b), each point of the curve is the local optimal of 

conversion under a specified temperature; while the one with the highest conversion is denoted as 

global optimal under a specified temperature. At temperatures below 550.0 °C, limestone catalyst 

showed a significant improvement on the C. vulgaris conversion. This is due to the alkali CaO 

element in limestone catalyst which reduced the activation energy of the pyrolysis reaction and 

resulting in a higher conversion of C. vulgaris. For this temperature range, the limestone catalyst 

results in higher conversion than HZSM-5 zeolite catalyst converting almost all the carbohydrates, 

protein and lipid to bio-oil. Meanwhile at temperatures between 550.0 °C to 800.0 °C, both 

limestone and HZSM-5 zeolite catalysts shown almost similar catalytic effect in converting the C. 

vulgaris as shown in Table 3. Previous study has reported that Brønsted acid sites predominate in 

HZSM-5 zeolites will be activated at temperature above 500.0 °C and this could further enhance 

the secondary tar cracking such as dehydrogenation, decarboxylation, and aromatization to convert 

the light vapors and tar to form water, carbon dioxide, carbon monoxide, alkanes, alkene, methane 

and hydrogen (Vitolo et al., 2001). Thus, higher gaseous yield will be obtained in this stage. At 

temperature above 800.0 °C, the limestone catalyst started to lose its stability and catalytic activity 

due to the degradation of CaO to CO2. Thus, HZSM-5 zeolite is a more suitable catalyst in thermal 

degradation process at temperature above 800.0 °C.  

 

Table 2: Optimum conditions to enhance C. vulgaris conversion at different temperature range. 

Temperature 

Range (°C) 

Optimal 

Heating Rate 

(°C/min) 

Optimal 

Heating 

Flow (mW) 

Optimal 

Temperature 

(°C) 

Best Catalyst Microalgae 

Conversion 

(%) 

30 - 50 5.0 300.0 50 Limestone 20.0 

50 - 100 5.0 300.0 100 Limestone 27.4 

100 - 150 5.0 300.0 150 Limestone 33.1 
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150 - 200 5.0 300.0 200 Limestone 37.5 

200 - 250 5.0 300.0 250 Limestone 43.6 

250 - 300 5.0 278.4 300 Limestone 49.2 

300 - 350 5.0 76.1 350 Limestone 54.2 

350 - 400 5.0 59.1 400 Limestone 58.7 

400 - 450 15.8 0.0 450 Limestone 62.5 

450 - 500 20.2 0.0 500 Limestone 64.9 

500 - 550 19.9 0.0 550 Limestone 67.7 

550 - 600 5.0 174.8 600 HZSM-5 Zeolite 69.4 

600 - 650 5.0 0.0 650 HZSM-5 Zeolite 72.0 

650 - 700 5.0 0.0 700 Limestone 76.1 

5.0 300.0 700 Non-Catalytic* 76.1 

5.0 0.0 700 HZSM-5 Zeolite** 75.0 

700 - 750 5.0 0.0 750 Limestone 80.1 

5.0 300.0 750 Non-Catalytic** 79.6 

5.0 0.0 750 HZSM-5 Zeolite** 78.6 

750 - 800 5.0 0.0 800 Limestone 83.3 

5.0 300.0 800 Non-Catalytic** 81.8 

5.0 0.0 800 HZSM-5 Zeolite** 83.3 

800 - 850 5.0 0.0 850 HZSM-5 Zeolite 88.0 

850 - 900 5.0 0.0 900 HZSM-5 Zeolite 88.3 

*Non-catalytic can reach maximum conversion, but more heating flow is required. This is not the 

bi-level optimum, however, authors decide to present it. 

**Near to optimum points that can be considered. 
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4. Conclusion 

Thermal conversion of C. vulgaris was successfully modeled using neuro-evolutionary approach. 

Based on the benchmarking results, the simulation performance of the proposed approach 

significantly outperforms other conventional methods with lower RMSE and MBE values (> 90 % 

lesser error) compared to other methods; while maintaining a high R2 value (> 0.9990). A bi-level 

optimization was performed using Simulated Annealing algorithm to determine the optimal 

operating conditions. The highest conversion of C. vulgaris (88.3 %) to bio-oil and gaseous 

product was achieved at a temperature of 900.0 oC, heating rate of 5.0 oC/min, and with the 

presence of HZSM-5 zeolite catalyst. 
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