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Preface

CO2-induced climate change has the characteristics of a gradually progressive disorder
of the delicately balanced environment of the planet with an overwhelming concern
over profuse CO2 emissions from industries and the locomotives (transportation sec-
tor), making way for concerted efforts to arrest the debilitating effects of the phenom-
enon. Apart from CO2 emissions, particulates of impurity have to be removed from
natural gas streams. Nanomaterials—due to their excellent chemical, structural, and
morphological characteristics—are being widely investigated for CO2 capture and con-
version processes. These materials are being applied to absorption, adsorption, mem-
branes, and catalytic conversion processes of CO2, given that the enhanced and
tailormade properties of nanomaterials make them attractive for a wide range of CO2

capture and conversion processes. Especially, nanomaterials have shown excellent cata-
lytic characteristics for CO2 conversion into fuels and chemicals. This book has the
following aims: first, to focus on the applications of nanomaterials for CO2 capture
and conversion processes; secondly, to highlight the need for CO2 mitigation, where
carbon dioxide emissions can be regulated with knowledge from the basic principle
for CO2 capture and conversion processes using different nanomaterials, and to face
the environmental challenges and perspectives for using nanomaterials for CO2 mitiga-
tion technologies; and lastly, to act as a reference material helpful to both academicians
and professionals, alike, with a need to know the basic principles for CO2 capture and
conversion techniques using nanomaterials and their synthesis. Given its alignment
with pedagogical principles for teaching graduate students or using in lab-scale experi-
ments or prototype design applications, and as a ready reckoner for professionals, espe-
cially engineers, scientists, policymakers, and environmentalists, the book makes for an
excellent guide to develop nanotechnology for CO2 capture and conversion. The
book consists of 16 chapters.

Chapter 1 provides an extensive review of the presence of CO2 in natural gas
streams and their impact on the process equipment, especially corrosion. The chapter
further explores types of CO2 corrosion, their kinetics, and prevention techniques.

Chapter 2 discusses the basic principles of CO2 capture and conversion technologies.
The principles of absorption, adsorption, membrane separation, oxy-fuel combustion,
chemical looping combustion, cryogenic separation, electrocatalysis, photocatalysis,
CO2-based polymer synthesis via chain insertion, etc. are well amplified from the
point of view of giving an initial grip to the reader on the technologies which will
be further developed later in the book.
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Chapter 3 reports the chemical, physical, and morphological characteristics of
nanomaterials. The chapter introduces nanomaterial fabrication and their characteriza-
tion techniques, followed by detailed coverage of applications of nanomaterials in dif-
ferent CO2 capture and conversion processes depending on their characteristics.

Chapter 4 begins with a discussion on the status of CO2 emissions and introduces
nanofluids. Detailed methods of preparation of nanofluids are provided for various
nanofluids. Applications of different nanoparticles as nanofluids such as aluminum
oxide, silica and silica oxide, iron oxide, titanium oxide, carbon nanotubes, nanocom-
posites, and MXene for CO2 capture are described in detail. The chapter ends with a
look at effective parameters for CO2 absorption and the mechanism of CO2 interac-
tion with nanofluids.

Chapter 5 introduces waste and biomass sources and the synthesis methods for
porous carbon materials from waste and biomass, followed by a discussion of nanoma-
terials with waste and biomass-derived adsorbents. The chapter provides details on the
mechanism of CO2 capture and ends with prospects for the commercialization of
waste and biomass-based nano adsorbents.

Chapter 6 introduces various nanomaterials and focuses on titanium-based nano-
materials. It provides details on the fundamentals, mechanism, thermodynamics, and
kinetics of CO2 photocatalytic conversion over TiO2 nanophotocatalysts, their modifi-
cation strategies for enhanced CO2 photoreduction, and ends with an overview of
future research perspectives.

Chapter 7 begins with the discovery and history of perovskite photovoltaics and
introduces products from CO2 conversion and their applications. A detailed brief of
perovskite materials for CO2 conversion is provided in the chapter, along with a look
at the synthesis and characterization methods followed by a sounding out of the chal-
lenges in the efficacy and application of perovskite nanomaterials for CO2 conversion.

Chapter 8 introduces synthesis methods and characterization of graphene nanoma-
terials. The chapter's primary focus is on applying graphene-based nanomaterials for
various CO2 capture and conversion processes such as photocatalytic reduction, elec-
trochemical CO2 reduction, CO2 hydrogenation, and membranes for CO2 capture,
CO2 cycloaddition, and CO2 adsorption. The chapter ends with foreshadowing the
prospects and technological challenges in utilizing graphene-based nanomaterials for
CO2 capture and conversion.

Chapter 9 launches straightforward into a discussion of the synthesis methods and
properties of carbon nanotubes for CO2 capture and conversion. Focus has been given
to the various types of carbon nanotubes, such as single-wall carbon nanotubes, multi-
wall carbon nanotubes, functionalized carbon nanotubes, and carbon nanotube com-
posites for CO2 capture.

Chapter 10 introduces metal-organic frameworks as efficient CO2 capture and
conversion materials. A detailed view of applications of metal-organic frameworks for
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CO2 capture and conversion processes such as electrocatalysis, photocatalysis, and
thermal catalysis is provided with an elucidation of the structure�activity relationship
closing the chapter.

Chapter 11 introduces zeolite materials and their characteristics. A detailed account
of zeolites as adsorbents in CO2 capture is provided, along with the adsorption
mechanisms effect of various parameters on CO2 adsorption. The chapter also provides
status on the development and application of multiple zeolites such as metal
cation�exchanged zeolites, hydrophobic zeolites, hierarchical zeolites, zeolite mem-
branes, and zeolites catalysts. The chapter ends with a presage of future challenges and
perspectives on using zeolites for CO2 capture technologies.

Chapter 12 describes the synthesis of dual-functional nano zeolites and highlights
their properties and characteristics for CO2 capture. The chapter's primary focus is on
the conversion processes of CO2 into value-added products such as methane, metha-
nol, ethanol, gasoline, olefins, aromatics, and fine chemicals. The design of dual-func-
tional materials and the effect of zeolite topology in the dual-functional materials for
CO2 conversion are drawn out in detail. The chapter wraps up with an insight into
the environmental impact of dual-functional nano zeolites and their future challenges
and prospects for transformation.

Chapter 13 details the synthesis of mesoporous silica nanoparticles, their characteri-
zation, and desired properties for CO2 capture. A detailed review of the applications
of mesoporous silica nanoparticles for CO2 capture and conversion is provided, along
with reaction mechanisms.

Chapter 14 delves into the synthesis and characterization of ionic liquid functiona-
lized nanomaterials and their description for CO2 capture. Applications of ionic
liquid-based nanomaterials have been described for CO2 hydrogenation, electrochemi-
cal fixation, electrochemical conversion, etc.

Chapter 15 enlightens with a techno-economic analysis of nanomaterials in CO2

capture and conversion technologies. More specifically, process economic analysis using
nanomaterials, the cost involved in the synthesis of nanomaterials, and the techno-
economic aspect of CO2 conversion processes using nanomaterials are clarified.

Chapter 16 gives the finishing touches to an exegesis on nanomaterials by digres-
sing into the environmental impact of nanomaterials. The chapter introduces the
application of various nanomaterials for CO2 capture and conversion processes. Focus
has been given to the toxicities of nanomaterials, the pathways to the environment
and water bodies, and the impact of exposure to nanomaterials on animals, humans,
food chains, etc.

Shaukat Ali Mazari
Nabisab Mujawar Mubarak

Manoj Tripathi
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CHAPTER 8

Graphene-based nanomaterials for CO2
capture and conversion
Bridgid Lai Fui Chin1, Adrian Chun Minh Loy2, Kin Wai Cheah3, Yi Herng Chan4,
Serene Sow Mun Lock5 and Chung Loong Yiin6
1Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia,
Miri Sarawak, Malaysia
2Department of Chemical Engineering, Monash University, Clayton, VIC, Australia
3School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, United Kingdom
4PETRONAS Research Sdn. Bhd. (PRSB), Lot 3288 & 3289, Off Jalan Ayer Itam, Kawasan Institusi Bangi, Kajang,
Selangor, Malaysia
5CO2 Research Centre (CO2RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS,
Bandar Seri Iskandar, Perak, Malaysia
6Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak
(UNIMAS), Sarawak, Malaysia

8.1 Introduction

The ever-increasing human population and growth in urbanization around the world
has resulted in the excessive emission of greenhouse gases (GHGs), particularly carbon
dioxide (CO2), to the environment, which contributes to both environmental and
health issues (Lu et al., 2021). This is because we are still heavily dependent on the use
of fossil fuels for energy supply and most renewable source technologies are still not
practiced commercially due to their uncompetitiveness when compared to the con-
ventional fossil fuels as an energy source (Chin et al., 2016). It was evidently reported
that the CO2 emission increased drastically from 20.5 Gt to 31.5 Gt from 1990 to
2020 (IEA, 2020). According to Global Climate Change (2021), the CO2 concentra-
tion was documented at the value of 410 ppm and this value indicates the global
warming concerns which need to be taken seriously. There is an urgent need to find
effective approaches to reduce and control the emission of the CO2 to the environ-
ment for resolving this issue (Global Climate Change, 2021). A few strategies such as
solar energy utilization (Li et al., 2019), green plants cultivation (Wang et al., 2016),
and coal desulfurization (Liu et al., 2020) are alternatives for CO2 reduction.
However, these methods are said to be time consuming or involve complicated equip-
ment with low efficiency (Lu et al., 2021). Recently, there is an increasing interest in
the development of graphene-based nanomaterials for CO2 capture and conversion by
researchers and scientists (Balasubramanian & Chowdhury, 2015; Kudahi et al., 2017;
Wang et al., 2014).
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Graphene is a carbon allotrope that displays the properties of a semiconductor and
it is grouped as a quasi-metal (Si et al., 2021). Furthermore, the existence of carbon in
graphene allows the flexibility in different nanostructures such as zero-, one-, two-, or
three-dimensional elemental structure (Le et al., 2021). Additionally, the graphene has
a flat single layer of two-dimensional sheets a single-atom-thick derived from crystal-
line graphite (Balandin et al., 2008; Dragoman & Dragoman, 2009; Du et al., 2008;
Ganganboina & Doong, 2020; Lee et al., 2008; Miao et al., 2007; Murali et al., 2009;
Nair et al., 2008; Novoselov et al., 2004; Shen et al., 2009; Si et al., 2021; Stoller
et al., 2008; Yu et al., 2010; Tombros et al., 2007) (Table 8.1).

In this chapter, the recent advances and development progress of graphene-derived
nanomaterials particularly in CO2 capture and conversion are critically examined.
Furthermore, the various synthesis methods of graphene nanomaterials such as
Hummer’s method, mechanical exfoliation, electrochemical method, and chemical
vapor deposition (CVD) method are presented. The different types of graphene-based
nanomaterials (photocatalytic reduction, electrochemical CO2 reduction, graphene-
based nanomaterials for CO2 hydrogenation, graphene-based nanomaterials mem-
branes for CO2 capture, and graphene-based nanomaterials for CO2 cycloaddition) are
compiled based on recent literature. Lastly, the future prospects and technological
challenges for the utilization of graphene-based nanomaterials for CO2 capture and
conversion are discussed.

Table 8.1 Summary of graphene properties compiled by (SI et al., 2021).

Properties Values References

Young’s modulus 1 TPa Lee et al. (2008)
Fermi velocity 300�500 nm Dragoman and Dragoman

(2009)
Thermal conductivity 5000 Wm21 K21 Balandin et al. (2008)
Current density 1,000,000 ms21 Dragoman and Dragoman

(2009)
Fracture strength 130 GPa Lee et al. (2008)
Specific surface area 2630 m2 g21 Stoller et al. (2008)
Elaxation length 15,000 cm2 V21 s21 Novoselov et al. (2004)
Sheet resistance 1.33 104�5.13 104 Ω sq21 Nair et al. (2008)
Mobility (Intrinsic) 108 A cm22 Murali et al. (2009),

Yu et al. (2010)
Spin R 1.5�2 μm Tombros et al. (2007)
Optical transmittance 97.7% Nair et al. (2008)
Phase coherence length 3�5 μm Miao et al. (2007)
Mobility (typical) 200000 cm2 V21 s21 Du et al. (2008)
Thermal resistance

(interface)
43 1028 km2 W21 Shen et al. (2009)
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8.2 Synthesis method and characterization of graphene
nanomaterials

It is well-acknowledged in the literature that the rational design of graphene-based
nanomaterials with well-defined morphology and structures plays a vital role in steer-
ing the selectivity and performance of graphene nanomaterials toward CO2 capture
and conversion. To date, a significant number of graphene synthesis methods have
been developed to search for the most efficient and economical approach to produce
high-quality graphene nanomaterials for the application of CO2 capture and conver-
sion. Generally, the graphene synthesis methods can be grouped into two main types,
i.e., bottom-up and top-down. The former method typically used a carbonaceous gas
source as the reactant to form a covalently linked two-dimensional (2D) carbon net-
work, while the latter technique depends on exfoliation of graphite to break down
the powder graphite materials into graphite sheets. Some of the graphene synthesis
approaches include mechanical exfoliation, Hummers’ method, electrochemical
method, and CVD (Ahmed et al., 2020; Bhuyan et al., 2016; Shams & Zhang, 2015;
Taheri Najafabadi, 2015; Toh et al., 2014; Warner et al., 2013) (Table 8.2).

8.2.1 Mechanical exfoliation
Mechanical exfoliation, also known as adhesive tape technique is a top-down approach
that requires mechanical energy to exfoliate graphite. Within the top�bottom con-
cept, the graphene material is mechanically isolated from the bulk graphite layer by
layer. Normal force or lateral force is applied to overcome the van der Waals attraction
forces between the graphene flakes. In 2004, graphene sheet was successfully synthe-
sized by Andre Geim and Kostantin Novoselov via a micromechanical cleaving
method, also known as the “Scotch Tape Exfoliation” method (Novoselov et al.,
2004). Novoselov et al. (2004) and his coworkers used an adhesive tape to extract a
single layer of defect-free graphene atoms (1 mm thickness) from a three-dimensional
(3D) highly ordered pyrolytic graphite (HOPG) (Novoselov et al., 2004). In a typical
mechanical exfoliation procedure, a fresh piece of Scotch tape with a length of about
6 inches was pressed onto the HOPG and exerted normal force on it for about 10 sec-
onds. After approximately 10 seconds, the tape was gently removed from the graphite
and a thick layer of shiny graphite layer was attached to the adhesive side of the tape.
Next, the tape with the graphite layer was refolded onto a clean adhesive part of the
tape before it was unfolded. The same steps were repeated several times until the end
of the tape turned into a dark color. Following, the graphite layers on the tape were
transferred onto the surface of the silicate or silica oxide wafers by gently pressing
them on the tape before peeling it off.

Although the micromechanical exfoliation approach can yield high-quality single-
layer or bi-layer graphene nanomaterials with the lateral dimensions on the order of

213Graphene-based nanomaterials for CO2 capture and conversion



Table 8.2 Strengths and limitations of each synthesis technique of graphene nanomaterials.

Synthesis method Strengths Limitations

Mechanical
exfoliation

2 Safe and simple sample preparation
2 Graphite layer in nanoscale can be

easily obtained
2 High graphene purity

2 Poor graphene yield
2 Requires skilled manual labor or mechanical energy
2 Despite the tape residue does not affect the quality of the graphene

nanomaterials significantly, however it does make those samples
more difficult to find on the substrate

2 High production cost
2 Uneven thickness of graphene film
2 Not readily available for mass production

Hummer method 2 High graphene yield
2 Highly scalable
2 Excellent dispersibility in various

solvents

2 Tedious, time-consuming, and labor-intensive procedures
2 Longer preparation time
2 Higher reaction temperature
2 Inevitable defects on graphene sheets
2 Poor thickness control

Electrochemical
method

2 Easy to operate
2 Relatively faster approach
2 High graphene yield
2 Scalable to industrial level
2 Environmental-friendly
2 Allows functionalization of graphene

sheet with different types of electrolyte
2 Well-suited with organic compounds

or polymers materials

2 Presence of impurities (electrolyte salts) between the graphene
sheets

2 Poor thickness control

Chemical vapor
deposition
(CVD)

2 Production of high-quality,
impervious, and hard graphene sheets

2 Allows mass production of graphene
nanomaterials

2 High growth rates
2 Excellent reproducibility

2 Presence of wrinkled graphene nanomaterials at high temperatures
over 900�C

2 Environment-unfriendly due to production of corrosive and toxic
gaseous such as NO2 and N2O4

2 Difficulty in locating a proper substrate to grow graphene layers
2 Difficulty in transferring and removing the film from the substrate

to other surfaces without affecting the structure of the graphene
2 Difficulty in controlling the thickness and achieving uniform

deposition of the carbon materials
2 Further purification needed to remove residue catalyst



tens to hundreds of micrometers, this method has been condemned by many previous
researchers for its extremely labor-intensive and time-consuming procedures (Yi &
Shen, 2015). From the perspective of industrial practicability, it may be easy to isolate
small amouns of this one-atom-thick carbon material, but it is technically impossible
to produce large graphene sheets by using the tape exfoliation method for commercial
applications like CO2 capture and conversion. Thus, this technique is limited to labo-
ratory scale and does not appear to be scalable for industrial production. Also, a major
drawback of this technique is its inherent complexity in identifying and finding a
proper substrate to grow graphene layers on as well as the difficulty in transferring and
removing the film from the substrate to other surfaces without affecting the structure
of the graphene. Recently, several researchers have been attempting to improve the
scalability and efficiency of the mechanical exfoliation technique by using an advanced
operational setup such as ultrasharp single-crystal diamond wedge and a three-roll mill
machine with a polymer adhesive (Chen et al., 2012; Jayasena & Subbiah, 2011).
These novel methods have reduced the labor cost and eliminated the need for manual
operation. However, all of these new approaches still suffer from additional machinery
complexity, high production cost, and high energy consumption, which limit their
scalability for mass production (Lee et al., 2020).

8.2.2 Hummer’s method
Of all the chemical exfoliation approaches, Hummers’ method is one of the most
commonly used techniques to synthesize graphene nanomaterials. Unlike the
mechanical exfoliation technique, graphite substrates are chemically oxidized to
graphite oxide (GO) by treatment with a mixture of concentrated oxidizing
reagents such as sulfuric acid (H2SO4), sodium nitrate (NaNO3), and potassium
permanganate (KMnO4). As reported by Hummers (Hummers & Offeman, 1958),
the graphite powders were added into a solution mixture of NaNO3 and H2SO4

in an ice bath. Moreover, KMnO4 was also added to keep the suspension tempera-
ture at 20�C. As the suspension became concentrated, hot water was subsequently
added to dilute the suspension and the diluted suspension was further treated with
the addition of hydrogen peroxide (H2O2) to reduce the residual permanganate to
soluble manganese ions. Lastly, the mixture was subsequently filtered and washed
with warm water several times to remove the soluble salt of mellitic acid. The
resulting GO solids were then dried under an air-free environment over phospho-
rus pentoxide (P4O10) at 40�C.

Due to the release of harmful and explosive gases like nitrogen dioxide (NO2),
dinitrogen tetroxide (N2O4), and chlorine dioxide (ClO2) during the synthesis, the
Hummers’ method has undergone several modifications over the years, mainly focused
on eliminating the use of NaNO3 and avoiding the release of toxic nitrous gases
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(Lee et al., 2019; Marcano et al., 2010). Thus most of the modified Hummer’s meth-
ods have introduced a greener and cheaper approach in producing a more stable GO
colloidal suspension at a much shorter time frame and milder reaction conditions.
Typically, it is carried out in the following three major steps: oxidation, reduction,
and posttreatment. In oxidation, the natural graphite flakes are added into a solution
mixture of H2SO4 and HNO3 under continuous stirring in an ice bath, followed by
the addition of KMnO4 under room temperature. Next, warm water is added to the
solution until the pH is about 7 before it is centrifuged and filtered. Lastly, a mono-
layer GO product is obtained from the ultrasonication process.

Instead of applying the conventional thermal reduction, a known volume of reduc-
ing agents such as hydrazine and sodium borohydride (NaBH4) are added to the mea-
sured solution to further reduce the resulting GO product. This helps to remove the
attached functional group on the GO. Furthermore, polar aprotic solvents can be
added to improve the exfoliation performance. Lastly, the solution is filtered and
washed with water until neutrality is achieved before the solid is dried and ground for
further use. Despite the distinct advantages of Hummers’ methods for the synthesis of
graphene oxide, the major drawbacks of this top-down approach are its inherent
tedious preparation procedures, use of strong oxidizing agents, and high reaction
temperatures.

8.2.3 Electrochemical method
In recent years, electrochemical exfoliation of graphite has emerged as an eco-friendly
and efficient preparation technique potentially capable of synthesizing high-quality
few-layer graphene (FLG) in mass amounts. Unlike other methods, the production of
graphene nanomaterial via electrochemical technique involves a single hybridization
step without the use of any volatile solvents or strong oxidizing agents. In this method,
a fixed potential or electrical voltage is usually applied to drive the ionic species in the
electrolyte solution into the graphite electrode before weakening the van der Waals
forces between the graphite layers. The evolution of locally formed gaseous species
intercalate the adjacent sheets of graphene and cause the graphene sheet to expand. As
a result, the graphene sheets disintegrate during the intercalation and the interlayer dis-
tance of graphene layers increases.

To date, electrochemical exfoliation of graphite has been conducted in ionic
liquids (Lei et al., 2017; Liu et al., 2008; Yan et al., 2017) and conventional inor-
ganic electrolytes such as HCl, HF, H2SO4, HNO3, H3PO4, NaCIO4, and others
(Lee et al., 2020; Lin et al., 2016; Lowe et al., 2019). It has been well-reported in
the literature that both ionic liquids and inorganic electrolytes have their respective
strengths and limitations for use in electrochemical exfoliation. For example, electro-
chemical exfoliation of graphene materials in acidic electrolytes can yield a higher
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quality of graphene flakes with a larger lateral size. However, the resulting graphene
flakes will still possess a significant amount of oxygen-containing functional groups
due to the fact that the graphite is being oxidized by the products of the acid elec-
trolysis (Li et al., 2020). In contrast, the usage of ionic liquid as an electrolyte
solution in electrochemical exfoliation of graphene can promote a better functionali-
zation performance at the expanse of the graphene yield and lateral size (Li et al.,
2020).

As a whole, electrochemical exfoliation has several advantages over the tradi-
tional mechanical and chemical methods. The single-step technique is versatile in
terms of chemical functionalization and allows the potential of mass production of
graphene. This environment-friendly method is easy to operate and able to oper-
ate at ambient conditions. Furthermore, this synthesis method also encourages the
facile production of graphene flakes within several minutes or hours. On the other
hand, this electrochemical method also suffers a number of major downfalls that
are required to be addressed promptly in the future before it can be applied at a
larger manufacturing scale. For example, loose graphite powder may not be appli-
cable as the electrode needs to be continuous and electrically conductive (Achee
et al., 2018). Thus, only graphite monoliths are suitable to be used as the carbon
source for electrochemical exfoliation. Secondly, the electrochemical exfoliation
process tends to halt when the graphite electrodes disintegrate and interrupt the
entire circuit, which leads to the need for further intercalation of unexfoliated
materials (Achee et al., 2018).

8.2.4 Chemical vapor deposition (CVD) method
Chemical vapor deposition (CVD) is a bottom-up technique that decomposes, com-
bines, and deposits volatile carbon-containing gases (methane, acetylene, ethylene,
hexane, and other biomass materials) onto a substrate in a reaction chamber in the
presence of a metallic catalyst (copper or nickel film). By heating up the carbonaceous
material at elevated temperatures (650�C�1000�C), the carbon precursor decomposes
into volatile gas molecules and it dissociates into individual carbon and hydrogen
atoms upon contacting the surface of the metal catalysts (Lee et al., 2019). Afterwards,
the carbon atom diffuses through the surface and bulk of metal catalysts before forming
the graphene sheets. At the same times, the by-product gases are pumped out
from the chamber. In short, the graphene films can be produced from CVD in merely
two steps. The first step involves thermal pyrolysis of a precursor materials at high tem-
perature to form carbon atoms on a substrate materials. In the second step, the dissoci-
ated carbon atoms are assembled onto a substrate in the presence of a metal catalyst
before forming a monolayer or multilayer graphene film. In CVD, reaction tempera-
ture plays an important role as it has a significant effect on the type of reaction that
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occurs and the properties of the resulting products. Although CVD can produce high-
quality and high-purity graphene films with low defects and high surface area, the by-
products produced from the reactions can be very toxic due to the volatile nature of
the precursor gases. Furthermore, the resulting graphene needs to be transferred from
the metal surface to the target substrate, which makes the production process difficult
to control and further hinders its potential industrial applications in CO2 capture and
conversion (Li et al., 2020).

8.3 Applications of graphene-based nanomaterial

8.3.1 Graphene-based nanomaterials for CO2 adsorption
Graphene-based nanomaterials have emerged as promising solid sorbents for CO2 sep-
aration and capture, owing to their high specific surface area, lower production cost,
superior structural, chemical, mechanical, thermal, and electrical characteristics
(Abergel et al., 2010; Wang et al., 2014). Studies on graphene-derived materials on
adsorption of CO2 have been reported by several researchers. Generally, the adsorp-
tion of CO2 by sorbents is controlled by five stages of mass transport mechanism,
namely CO2 external diffusion, film diffusion, pore diffusion, intraparticle diffusion,
and surface adhesion (Kudahi et al., 2017).

To enhance the CO2 adsorption capacity, selectivity, and kinetics for industrial
applications, several techniques such as heat/electric/chemical treatment, surface func-
tionalization and modification, nanoparticles doping, development of hybrid graphene
or graphene oxide nanocomposites have been proposed and attempted. These treat-
ments aim to enhance the surface area, porosity, available active sites, and surface
chemistry of the sorbents, hence facilitating better diffusion and binding (adsorption)
of CO2 molecules on the surface of the sorbents. Stanly et al. (2019) synthesized poly-
phosphoric acid and amino-modified montmorillonite clays (PMMT and AMMT)
and hybridized them with reduced graphene oxide (rGO) to study the performance of
the developed sorbents (Stanly et al., 2019). The BET surface area of PMMT/rGO
hybrid was increased tremendously to 50.77 m2 g21 as compared to that of pristine
MMT (14.90 m2 g21) and GO (1.14 m2 g21), leading to its improved CO2 adsorp-
tion capacity of 0.49 mmol g21 at low pressure (900 mmHg) (Stanly et al., 2019).
Ning et al. (2021) developed a graphene-based semicoke porous carbon and found it
boosted the CO2 adsorption capacity (7.11 mmol g21 at 25�C and 30 bar) and selec-
tivity (CO2/N25 28.24, at 25�C) (Ning et al., 2021). This was attributed to the
nitrogen-rich layered sandwich-like structure of the materials, which greatly improved
the CO2 mass transport (Ning et al., 2021).

While isotherms and equilibrium studies of CO2 adsorption have been widely
reported, the kinetics of CO2 adsorption on various sorbents is also equally important.
Kudahi et al. (2017) investigated the kinetics of CO2 adsorption on various novel
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graphene-based sorbents, namely mesoporous graphene oxide/TiO2 nanocomposite,
thermally treated graphene nanosheets, holey graphene frameworks, and 3-D
graphene-based porous adsorbent (Kudahi et al., 2017). Several kinetic correlations
(pseudo-first order model, pseudo-second order model, Avrami model, and fractal-like
exponential kinetic model) were used to describe the CO2 adsorption kinetics, in
addition to the investigation of interparticle diffusion model, intraparticle diffusion
model, and Boyd’s film diffusion model in determining the rate-limiting mechanism
of adsorption (Kudahi et al., 2017). Pajdak et al. (2019) compared the equilibrium iso-
therms and kinetics of CO2 adsorption in rGO, multi-walled carbon nanotubes
(MWCNT) and coals, and reported that the sorption equilibrium was attained almost
instantaneously by rGO and MWCNT following a pressure change in the reactor
(Pajdak et al., 2019) (Figs. 8.1 and 8.2).

Other than that, several computational modeling studies have also been reported on
CO2 adsorption by graphene-based nanomaterials to complement the empirical studies.
Sathishkumar et al. (2020) explored the (reversible) effect of charge-induced density

Figure 8.1 CO2 adsorption isotherms (Langmuir) on different types of sorbents: (A) Multi-walled
carbon nanotube (MWCNT), (B) rGO, (C) Sobieski coal, and (D) Budryk coal. From Pajdak, A.,
Skoczylas, N., Dębski, A., Grzegorek, J., Maziarz, W., & Kudasik, M. (2019). CO2 and CH4 sorption on car-
bon nanomaterials and coals � Comparative characteristics. Journal of Natural Gas Science and
Engineering, 72, 103003. https://doi.org/10.1016/j.jngse.2019.103003 (Original work published 2019).
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and external electric field on the stronger adsorption of CO2 by N-doped penta-
graphene sheet (chemisorption) through density functional theory (DFT) computa-
tions (Sathishkumar et al., 2020). Another study by Osouleddini and Rastegar
(2019) also applied DFT calculations to study and compare the adsorption energies
of CO2 on the surface of intrinsic graphene and tetracyanoethylene (TCNE)-modi-
fied graphene and found stronger interaction of CO2 on the surface of TCNE-
modified graphene due to the reduction of electron accumulation on the graphene
by TCNE molecule (Osouleddini & Rastegar, 2019). These computational studies
have paved the way toward fundamental understanding and insights of the chemis-
try between graphene-based adsorbents and CO2 (and other gas mixtures), which
are beneficial for the selection and synthesis of novel adsorbents (Chowdhury &
Balasubramanian, 2016a,b,c; Chowdhury et al., 2015; Kudahi et al., 2017; Li et al.,
2016; Liu et al., 2021; Ning et al., 2021; Stanly et al., 2019) (Table 8.3).

Figure 8.2 Kinetics of CO2 adsorption on different types of sorbents: (A) MWCNT, (B) rGO, (C)
Budryk coal, and (D) Sobieski coal. From Pajdak, A., Skoczylas, N., Dębski, A., Grzegorek, J., Maziarz,
W., & Kudasik, M. (2019). CO2 and CH4 sorption on carbon nanomaterials and coals � Comparative
characteristics. Journal of Natural Gas Science and Engineering, 72, 103003. https://doi.org/10.1016/j.
jngse.2019.103003 (Original work published 2019).
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Table 8.3 Summary of literature findings on CO2 adsorption by graphene-based nanomaterials.

References Adsorbent material Surface area/pore volume of
adsorbent

Adsorption
temperature and
pressure

CO2 equilibrium
adsorption capacity (qe)

Kudahi
et al.
(2017)

Graphene oxide/TiO2

nanocomposite
2 BET surface area: 83.12�99.54

m2 g21 (Chowdhury et al.,
2015)

2 Pore volume: 0.269�0.382 cm3

g21 (Chowdhury et al., 2015)

2 Temperature:
0�C�50�C

2 Pressure:
0�1 bar

1.091�2.389 mmol g21

Thermally treated
graphene nanosheets

2 BET surface area: 185�484 m2

g21 (Chowdhury &
Balasubramanian, 2016a)

2 Pore volume: 0.268�0.682 cm3

g21 (Chowdhury &
Balasubramanian, 2016a)

2 Temperature:
0�C�50�C

2 Pressure:
0�1 bar

1.286�2.985 mmol g21

Holey graphene
frameworks

2 BET surface area:
439.11�524.18 m2 g21

(Chowdhury & Balasubramanian,
2016b)

2 Pore volume: 1.06�1.27 cm3

g21 (Chowdhury &
Balasubramanian, 2016b)

2 Temperature:
0�C�50�C

2 Pressure:
0�1 bar

0.974�2.109 mmol g21

3-D graphene-based
porous adsorbent

2 BET surface area:
885.34�1315.98 m2 g21

(Chowdhury & Balasubramanian,
2016c)

2 Pore volume: 0.71�1.07 cm3

g21 (Chowdhury &
Balasubramanian, 2016c)

2 Temperature:
0�C�50�C

2 Pressure:
0�1 bar

1.588�3.412 mmol g21

Stanly
et al.
(2019)

Polyphosphoric acid
modified
montmorillonite
clay/reduced
graphene oxide
hybrids

2 BET surface area: 50.77 m2 g21

2 Pore volume: 0.0788 cm3 g21
2 Temperature:

25�C
2 Pressure:

0�900 mmHg

0.49 mmol g21

(Continued)



Table 8.3 (Continued)

References Adsorbent material Surface area/pore volume of
adsorbent

Adsorption
temperature and
pressure

CO2 equilibrium
adsorption capacity (qe)

Ning
et al.
(2021)

N-rich layered
sandwich-structure of
graphene-based semi
coke porous carbon

2 BET surface area: 467.96�
701.53 m2 g21

2 Pore volume: 0.23�0.37 cm3

g21

2 Temperature:
25�C

2 Pressure:
0.1�30 bar

3.99�7.11 mmol g21

Liu et al.
(2021)

Graphene oxide/core
shell ZIF-8@ZIF-67
nanocomposite
hybrid

2 BET surface area: 532�
1490 m2 g21

2 Pore volume: 0.29�1.60 cm3

g21

2 Temperature:
0�C

2 Pressure:
0�1 bar

0.90�2.15 mmol g21

Li et al.
(2016)

ZnO based N-doped
rGO porous
nanomaterial

2 BET surface area: 1122 m2 g21

2 Pore volume: 0.60 cm3 g21
2 Temperature:

25�C
2 Pressure:

0�1 atm

3.55 mmol g21



8.3.2 Graphene-based nanomaterials membranes for CO2 reduction
8.3.2.1 Photocatalytic reduction of CO2 using graphene-based materials
To date, graphene-based materials have been hailed to have an immense potential for
large range of industrial applications including semiconductors, optoelectronics, CO2

capture, hydrogen (H2) storage, catalysts, and sensors to name a few (Bardi et al.,
2020; Loy et al., 2019; Stoller et al., 2008; Yamamoto et al., 2020). On this ground,
large interests have been dedicated to photocatalytic activities owing to their unique
characteristics such as large surface area, high adsorption capacity, high stability, and
flexible tuning physiochemical characteristics, as well as high carrier mobility
(Bonaccorso et al., 2015; Purkait et al., 2017; Szczęśniak et al., 2017). For example,
graphene oxide (GO) has been elucidated as a semiconductor photocatalyst due to an
apparent bandgap of 2.4�4.3 eV, which is suitable for generating H2 through H2O
splitting under a wide range of solar energy from UV to near infrared light
(Giovannetti et al., 2017; Gusain et al., 2016; Kuang et al., 2020) (Fig. 8.3).

Figure 8.3 (A) Photocatalyst scheme of TiO2-assisted graphene-based nanocomposite (copyright
from Giovannetti et al., 2017); (B) graphene nanoparticles simulated using crystal maker software;
(C) SEM image of TiO2-RGO 0.5% (copyright from Leal et al., 2020); (D) TEM images of the RGO/Pt4
nanocomposite with (E) high resolution image, the insets of Fig. 8.3D. Data from Kasturi, S., Torati,
S. R., Eom, Y. J., Ahmad, S., Lee, B.-J., Yu, J.-S., & Kim, C. (2020). Real-time monitored photocatalytic
activity and electrochemical performance of an rGO/Pt nanocomposite synthesized via a green
approach. RSC Advance, 10(23), 13722�13731. https://doi.org/10.1039/D0RA00541Ja.
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Lately, nanocomposites of TiO2 with graphene-family materials have been
reported as very efficient photocatalysts (Jin et al., 2020; Kandulna et al., 2020;
Phukan & Sahu, 2020). Graphene is a two-dimensional carbon nanomaterial with a
honeycomb structure made of SP2 carbons (see AlShammari et al., 2020; Chen et al.,
2020; He et al., 2020; Leal et al., 2020).

Besides using TiO2 as cocatalyst, some researchers incorporated Pt ions on GO via
a cheap reducing agent to form RGO/Pt nanocomposites. Kasturi et al. (2020) have
reported honey as a reducing agent which plays a role in the in situ functionalization
of the Pt ions on the surface of RGO via a reduction method (Kasturi et al., 2020).
Interestingly, the increase of Pt precursor concentration will lead to a highly efficient
photocatalytic rate, implying that the Pt could induce a better electron transfer prop-
erty with higher current and conductivity as compared to the pure RGO. Based on
the TEM images (Kasturi et al., 2020; Neppolian et al., 2012), a well uniform and
good distribution of Pt nanoparticles with an average size of 2.5 nm on the surface of
rGO can be observed, suggesting that no agglomeration of Pt nanocluster was formed.
Owing to the remarkable high electron transfer property, the optimized photocatalyst
(20 wt% Pt precursor) exhibited a remarkable photocatalytic activity and degraded
98% of methylene blue in the presence of sunlight at an ambient temperature under
180 minutes. Neppolian et al. also synthesized a TiO2 doped Pt-GO nanomaterial
through ultrasound-assisted method (Neppolian et al., 2012). They tested the catalyst
using an anionic surfactant, dodecylbenzenesulfonate (DBS) in an aqueous solution
was carried out using Pt�GO�TiO2 nanoparticles in order to evaluate the photocata-
lytic efficiency. As expected, the Pt doped GO�TiO2 exhibited an enhanced rate of
mineralization of DBS under visible light irradiation.

8.3.2.2 Electrochemical CO2 reduction using graphene-based materials
By exploiting the presence of carboxylic groups (�COOH) on GO nanosheets, GO
tends to be an ideal platform for covalent immobilization of ions (Rowley-Neale
et al., 2018; Shaban et al., 2019; Smith et al., 2017). Apart from the -COOH func-
tional groups, GO also exhibits high electron mobility at room temperature, high
thermal conductivity, and strong mechanical properties (high Young’s modulus)
(Hasani et al., 2019). On this ground, GO can be classified as a relatively simple, eco-
nomic, fast, and environmentally benign electrochemical CO2 reduction method. In
2019 the first graphene-based single-atom catalyst for CO2 reduction reaction
(CO2RR) was revealed (Cheng et al., 2019). The authors doped the Ni single atom
on the highly porous defect-rich microwave exfoliated GO support via the impregna-
tion method. Interestingly, the exfoliated GO provides a large surface area and abun-
dant defects on the pore edge as anchoring sites for Ni, yielding a 3D structure
connected with a nanotube shape with a diameter of 30 nm, as observed in the TEM
image (see Fig. 8.4).
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In 2020, Hwang’s group reported that RGO layers can effectively alter the
Faradaic efficiency for CO production in electrocatalysis (Nguyen et al., 2020). They
have synthesized a the R-ZnO/rGO electrode that exhibited both of the diffraction
peaks associated with Zn metal and Zn cations (See Fig. 8.4).

8.3.2.3 Graphene-based nanomaterials for CO2 hydrogenation
The motivation underlying CO2 hydrogenation process is to convert CO2 to useful
products (Van-Dal & Bouallou, 2013). This not only creates a window for
profitable business but also minimizes CO2 emission, which is the root cause of global

Figure 8.4 (A) TEM image of Ni single atom/microwave exfoliated GO nanosheet (copyright from
Cheng et al., 2019); (B) DFT study of Ni-N species on the graphene plane (copyright from Cheng
et al., 2019), (C) Structure of R-ZnO/rGO electrodes (copyright from Nguyen et al., 2020); (D) Raman
Spectra of R-ZnO/RGO and ZnO/GO. GO, graphite oxide; DFT, density functional theory. Data from
Cheng, Y., Zhao, S., Li, H., He, S., Veder, J.-P., Johannessen, B., Xiao, J., Lu, S., Pan, J., Chisholm, M. F.,
Yang, S.-Z., Liu, C., Chen, J. G., & Jiang, S. P. (2019). Unsaturated edge-anchored Ni single atoms on
porous microwave exfoliated graphene oxide for electrochemical CO2. Applied Catalysis B:
Environmental, 243, 294�303. https://doi.org/10.1016/j.apcatb.2018.10.046.
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warming (Van-Dal & Bouallou, 2013). Nonetheless, the challenge arises because CO2

is considered to be an inert molecule that is relatively difficult to be activated for the
hydrogenation process (Liu et al., 2019). In this context, the utilization of an appropri-
ate and well-distributed catalyst is substantially important to ensure a sufficient conver-
sion, yield, and reaction rate of the hydrogenation process (Liu et al., 2019). In this
context, graphene-based nanomaterials have been proposed to be a strong support to
be utilized in CO2 hydrogenation owning to their favorable characteristics, which
include a large effective surface area, outstanding stability with respect to thermal and
chemical interaction, ease in surface alteration, and existence of various active sites for
catalytic activity (Tang et al., 2016). In this context, the graphene serves as a bridge
between different catalysts, which allows the uniform distribution of catalysts and
enhances the catalytic activity by strengthening the hydrogen spillover phenomenon.
During this process, activated H2 species migrate from the catalyst particle that binds
them to the carbon species of graphene nanomaterial. Subsequently, the graphene
works as a binding platform that enhances the absorption of hydrogen species to the
other catalysts that preferentially bind CO2, which forms a platform for the hydro-
genation process to occur. The mechanism of graphene oxide as a catalyst support and
bridging agent is shown in Witoon et al. (2018) (Fig. 8.5).

Summary of utilization of graphene-based nanomaterials for different applications
of CO2 hydrogenation is provided in Table 8.4 (Deerattrakul et al., 2016; Fan & Wu,
2016; Jurca et al., 2019; Liu et al., 2019; Ma et al., 2019; 2019; Mohd Ridzuan et al.,
2020; Nguyen et al., 2015; Primo et al., 2019; Witoon et al., 2018).

8.3.2.4 Graphene-based nanomaterials membranes for CO2 capture
Membrane is an emerging separation process for CO2 separation due to its many
benefits, such as flexible operating conditions, effective energy utilization and oper-
ating cost, its chemical free process, as well as the smaller footprint (Bernardo &
Drioli, 2010). Polymeric membranes dominate membrane separation technology in
industry at present since they have huge reproducibility for large-scale production
and low fabrication cost (Hwang et al., 2012). However, the performance of poly-
meric membranes is limited by the trade-off between permeability (high gas trans-
port to cater for large feed flux and high CO2 concentration) and selectivity
(preference of membrane to allow transport of CO2 while retaining the product gas
to constitute two concentrated streams) (Jusoh et al., 2016). To overcome the limita-
tions, the incorporation of inorganic fillers into polymer matrix to constitute mixed
matrix membranes (MMMs) has been proposed as a viable solution. Over recent
years, graphene-based nanomaterial has been studied extensively since it inherits
active functional groups such as epoxy, hydroxyl, and carboxyl groups that can
enhance dispersion within polymeric material while serving as active sorption sites
for CO2 separation. In this context, the uniformly distributed nanomaterial disrupts
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efficient polymer, which further contributes to the formation of bigger void spaces
that act as channels to enhance CO2 gas transport property. In addition, the higher
affinity for CO2 as compared to its counterpart also enhances the membrane selectiv-
ity that increases product purity. The enhancement in the separation mechanism of
membranes using graphene-based nanomaterial is illustrated in Fig. 8.6 (Goh et al.,
2019).

Realizing the benefits of graphene-based nanomaterial, research groups have begun
to incorporate it within MMM, as summarized in Table 8.5 (Casadei et al., 2019; Dai
et al., 2016; Dong et al., 2016, 2018; Ebrahimi et al., 2016; He et al., 2019;
Karunakaran et al., 2015; Li, Cheng, et al., 2015; Li, Ma, et al., 2015; Pazani &
Aroujalian, 2020; Prasad & Mandal, 2018; Raouf et al., 2020; Rea et al., 2018; Sarfraz
& Ba-Shammakh, 2016a,b; Shen et al., 2015; Wong et al., 2019; Xin et al., 2015;
Xue et al., 2017; Yang et al., 2020; Ying et al., 2018; Zahri et al., 2016; Zhao,
Cheng, et al., 2015; Zhao, Ren, et al., 2015).

Figure 8.5 Graphene oxide nanosheet as a bridge hydrogen spillover from the surface of copper
to the surface of other metal oxides. Reprinted with permission from Witoon et al. (2018), Copyright
(2018), with permission from Elsevier. Data from Witoon, T., Numpilai, T., Phongamwong, T., Donphai,
W., Boonyuen, C., Warakulwit, C., Chareonpanich, M., & Limtrakul, J. (2018). Enhanced activity, selectiv-
ity and stability of a CuO-ZnO-ZrO2 catalyst by adding graphene oxide for CO2 hydrogenation to meth-
anol. Chemical Engineering Journal, 334, 1781�1791. https://doi.org/10.1016/j.cej.2017.11.117.
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Table 8.4 Graphene-based nanomaterials for CO2 hydrogenation with its catalytic performance.

References Catalyst nanocomposite Synthesis method Product Catalytic activity

Liu et al. (2014) CuO-ZnO-Al2O3/graphene-
modified support

High energy
ball milling

Methanol CO2 conversion .14.6%
Yield. 12.6%
Product selectivity. 62.3% (10 wt% graphene,
3 MPa, 250�C)

Nguyen et al.
(2015)

PdNi alloy/
carbon nanotubegraphene support

Wet impregnation
and reduction

Formic Acid Yield . 1.92 mmol/1 mmol (Pd1Ni) catalysts
(Pd/Ni5 3/7, 5 MPa, 40�C)

Fan & Wu (2016) CuO-ZnO-ZrO2-Al2O3/reduced
graphene oxide (rGO)

Coprecipitation Methanol CO2 conversion . 14.7%
Yield. 18.4%
Product selectivity. 78.0% (80 wt% rGO,
2 MPa, 240�C)

Deerattrakul et al.
(2016)

Cu-Zn/rGO Incipient wetness
impregnation

Methanol CO2 conversion . 20.0%
Yield. 424 mg gcatalys t21 h21

Product selectivity. 15.6% (90 wt% rGO, 1.5MPa,
250�C)

Witoon et al.
(2018)

CuO-ZnO-ZrO2/GO Reverse
coprecipitation

Methanol CO2 conversion . 63.5%
Yield. 275 mg gcatalys t21h21

Product selectivity. 55.0% (1 wt% GO, 2 MPa,
250�C)

Ma et al. (2019) Cu-ZnO-Al2O3/N-doped graphene
(NG)

Coprecipitation Methanol CO2 conversion . 8.2%
Yield. 6.9%
Product selectivity. 84.0% (10 wt% GO, 3 MPa,

200�C)
Ma et al. (2019) Ni-SiO2/GO-Ni-foam Hydrothermal Methane CO2 conversion . 84.0%

Yield. 82.0%
Product selectivity. 98.0% (500 h21 Gas hourly

space velocity, 0.1 MPa, 470�C)
Jurca et al. (2019) N-doped defective

graphene from biomass
Pyrolysis Methane CO2 conversion . 52.3%

Product selectivity. 99.2% (2.5 MPa, 500�C)
Primo et al.

(2019)
MoS2/Defective flat layer

graphene MoO3/Defective flat
layer graphene

Pyrolysis Methane MoS2/Defective flat layer graphene CO2 conversion.
67.0%

Product selectivity. 98.0% (95.8 wt% graphene,
1 MPa, 600�C) MoO3/Defective flat layer
graphene CO2 conversion. 55.0%

Product selectivity. 99.0% (95.8 wt% graphene,
1 MPa, 500�C)

Mohd Ridzuan
et al. (2020)

Ni/rGO Incipient wetness
impregnation

Methane CO2 conversion . 55.3%
Yield. 24.9 mg gcatalys t21 h21

Product selectivity. 100% (85 wt% rGO, 1 MPa,
240�C)



8.3.2.5 Graphene-based Nanomaterials for CO2 cycloaddition
Graphene oxide (GO) consists of sp2-hybridized carbon atom basic building blocks that consist
of various oxygen functional groups. The oxygen functional groups could be either hydroxyl,
epoxide, carbonyl, or carboxyl, which allows the material to be changed easily (Dreyer et al.,
2010). It is evidently proven that GO is a great adsorbent for CO2 capture (Kim et al., 2014;
Shen et al., 2015) and acts as a good CO2 conversion catalyst (Lan et al., 2014; Luo et al.,
2014). Furthermore, the GO has been reported to be an outstanding performance catalyst spe-
cifically for cycloaddition reactions (Lan et al., 2014; Luo et al., 2014; Qu et al., 2012). The
presence of homogenous nucleophiles (e.g., quaternary ammonium salt) is said to be impor-
tant. It is proven that the catalytic activity improves when the hydrogen bonding donor and
nucleophilic anion interact with each other (Lan et al., 2014; Ma et al., 2012; Qu et al., 2012;
Song et al., 2008; Sun et al., 2014). Hence, this indicates that the GO multifunctionalized
with silanol group, salt derived from quaternary ammonium, and amine provides a good cata-
lytic activity for the cycloaddition of CO2 to epoxides when the effects of amine on CO2

adsorption and activation are observed (Pinto et al., 2011; Srivastava et al., 2005).
Carboxylic acid is considered a prospective chemical for building blocks as a fundamental

material for pharmaceutical and conjugated functional materials (Garg & Ling, 2013).
Carboxylic acid is known for its stable chemical properties, and it is derived from the by-
products of the decarboxylative coupling reaction, and considered as a natural benign CO2

(Feng & Loh, 2010; Kolarovič et al., 2011; Moon et al., 2008). Kim et al. (2012) investi-
gated the Ag-decorated graphene oxide catalyst (GOSH-Ag) for the application into the
decarboxylative cycloaddition reaction (J. D. Kim et al., 2012). The chemical reactions
involved in this study are shown in Fig. 8.7 (Garg & Ling, 2013; Kim et al., 2012).

8.4 Future prospect and challenges

Graphene-based nanomaterials offer a more sustainable future for fossil-fuel-based econo-
mies in CO2 capture and conversion through the development of new adsorbents with

Figure 8.6 Graphene-based nanomaterial used for design of mult-walled carbon nanotubes
(MMMs).
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Table 8.5 Graphene-based nanomaterials for membranes applied in CO2 separation with its separation performance.

References Membrane Application Permeability
CO2 (barrer)

Selectivity Test condition

Zhao, Ren,
et al. (2015)

GO/Polyimide
MMM

CO2/N2 15.94 84.36 1 wt.% GO, 1 MPa, 35�C

Shen et al.
(2015)

GO/Pebax MMM CO2/N2 100 91 0.1 wt.% GO, 0.3 MPa, 25�C

Karunakaran
et al. (2015)

GO/copolymer
PEO�PBT
(PolyActive)
composite

CO2/N2 143 73 0.065 wt.% GO, 0.05 MPa, 25�C

Zhao, Cheng,
et al. (2015)

GO/Pebax MMM CO2/CH4CO2/
N2CO2/H2

108 16.7,
48.5,
8.9

0.99 wt.% GO, 0.7 MPa, 25�C

Li, Ma, et al.
(2015)

GO-CNT/
Matrimidâ MMM

CO2/CH4CO2/N2 38.07 84.6, 81 5 wt.% GO, 5 wt.% CNT, 0.2 MPa,
30�C

Li, Ma, et al.
(2015)

Polyethylene glycol-
and
polyethylenimine-
functionalized
(PEG-PEI)-GO
nanosheets/Pebax
MMM

CO2/CH4CO2/N2 1330 45, 120 10 wt % PEG2PEI2GO, 0.2 MPa,
30�C

Xin et al.
(2015)

Amino acid
functionalization
(A-) GO/SPEEK
composite

CO2/CH4CO2/N2 1247 82, 115 8 wt.% AGO, 0.1 MPa, 25�C

Dong et al.
(2016)

Porous RGO/Pebax
MMM

CO2/N2 119 104 5 wt.% Porous RGO, 0.2 MPa, 30�C

Sarfraz and Ba-
Shammakh
(2016a)

GO-ZIF-301/PSF
MMM

CO2/N2 25 63 1 wt.% GO & 30 wt.% ZIF-301, 25�C



Dong et al.
(2016)

GO-ZIF-8/Pebax
MMM

CO2/N2 249 47.6 6 wt.% GO-ZIF-8, 0.1 MPa, 25�C

Dai et al. (2016) Imidazole
functionalized (Im)
GO/Pebax MMM

CO2/N2 76.2 105.5 0.8 wt.% Im-GO, 0.8 MPa, 25�C

Zahri et al.
(2016)

GO/PSF Hollow
Fiber MMM

CO2/CH4CO2/N2 74.47
(GPU)

29.9,
44.4

0.25 wt.% GO, 0.5 MPa, 25�C

Ebrahimi et al.
(2016)

AGO/PVA-PES CO2/CH4 21.54
(GPU)

32.14 10 wt.% AGO, 0.5 MPa, 30�C

Sarfraz and Ba-
Shammakh
(2016b)

GO-ZIF-302/PSF
MMM

CO2/N2 13 52 1 wt.% GO & 30 wt.% ZIF-302, 25�C

Xue et al.
(2017)

MWCNT/GO
nanoribbons/
Polyimide MMM

CO2/CH4 17 25 1 wt.% MWCNT/GO nanoribbons,
0.1 MPa, 35�C

Dong et al.
(2018)

Porous RGO-
modified halloysite
nanotube
(mHNT)/Pebax
MMM

CO2/N2 123.5 118 mHNT/Porous RGO ratio of 7.5,
0.3 MPa, 30�C

Prasad and
Mandal
(2018)

Graphene
(G)/Chitosan-silk
fibroin
nanocomposite

CO2/N2 159 (GPU) 93 0.5 wt.% G/54.5 wt.% Chitosan-45 wt.%
silk fibroin, 0.2 MPa, 90�C

Ying et al.
(2018)

GO-[BMIM][BF4]
ionic liquid

CO2/CH4CO2/
N2CO2/H2

71.93 234, 382,
24

0.105 MPa, 50�C

Wong et al.
(2019)

ACNT-AGO/
Polysulfone thin
film
nanocomposite

CO2/CH4CO2/N2 66.3 26.5,
47.1

ACNT/AGO ratio of 1:1, 0.6 MPa,
30�C

(Continued)



Table 8.5 (Continued)

References Membrane Application Permeability
CO2 (barrer)

Selectivity Test condition

Casadei et al.
(2019)

Few-layer G/
PVAm-HG Few-
layer GO/PVAm-
HG Few-layer
GO/PVAm-LG
composites

CO2/N2 23.1, 25.1,
71.0

45.2,
80.6,
59.0

3 wt.% G, 92% RH, 35�C 3 wt.% GO,
93% RH, 35�C 3 wt.% GO, 93%
RH, 35�C

Rea (2018) G/PPO MMM CO2/N2 62 17.7 0.3 wt.% G, 0.14 MPa, 35�C
He et al. (2019) Porous GO/o-

hydroxyazo-
hierarchical porous
organic polymers
(o-POPs-)
functionalized
Pebax MMM

O2/N2 232.7 80.7 POP/PGO ratio of 10:2, 30�C

Zhang (2019) AGO/Pebax MMM CO2/CH4CO2/N2 934.3 40.9,
71.1

0.9 wt.% AGO, 0.2 MPa, 35�C

Raouf et al.
(2020)

Graphene hydroxyl
(GOH)/PSF-PEG

CO2/CH4 36.50 22.4 4 wt.% GOH, PSF/10 wt.% PEG,
0.8 MPa, 35�C

Pazani and
Aroujalian
(2020)

G/Pebax MMM
GO/Pebax MMM

CO2/N2 44.78, 55.87 111.95,
120.72

0.7 wt.% G, 0.4 MPa, 25�C 1 wt.%
G, 0.4 MPa, 25�C

Yang et al.
(2020)

N-doped G
nanosheets/
Matrimid MMM

CO2/N2 2.365 42.23 0.10 wt.% N-G, 0.1 MPa, 35�C



high capacity and high selectivity for reducing energy-related CO2 emissions. The advan-
tages of graphene, such as good surface area, high solubility, conductive, and cheap source
of material are some of the key merits of the application of graphene in CO2 capture and
conversion. A broad range of graphene materials have been experimentally and theoreti-
cally explored to control CO2 emissions from fossil fuel combustion. However, this field
of investigation is still at its early stage of development for translation into real-world CO2

capture applications. Some challenges associated with graphene-based nanomaterials, such
as conductivity must critically be addressed with a thorough understanding of the flow of
electrons. Intensive research also needs to be conducted investigating the potential toxicity
of nanomaterials and chemistry involved in the applications before they can be available
commercially, with economical evaluation of nanomaterials as the next vital step for the
estimation of their feasibility to be applied in industries (Mazari et al., 2021). In this sense,
the approach and design in the manufacturing of graphene-based nanomaterials is crucial
in the future advancement of this material.

The origin of CO2 should also be evaluated comprehensively in terms of power
plant exhausts and direct air capture, whereby integration of CO2 capture with elec-
trochemical conversion may further increase the efficiency and reduce the costs
(Hoang et al., 2020). DFT calculations have been widely used to investigate the mech-
anistic understanding of the selective electrochemical reactions according to the bind-
ing energies of intermediate species with metallic nanostructured catalysts. Research
involving operando and in situ approaches are the main areas that should be explored
in order to gain extensive knowledge into the mechanism of relevant systems (Heidary
et al., 2019; Li et al., 2020; Zhu et al., 2020). In this context, infrared and Raman are
the vibrational spectroscopy that should be used to illuminate the double-layer struc-
ture, catalyst composition, identity of bound intermediates, etc. In addition, the infor-
mation on local chemical environment of specific elements of interest and electronic
structure should also be obtained through X-ray absorption and X-ray photoelectron
spectroscopies. In situ electron microscopy and X-ray diffraction are the essential anal-
yses which can be used to determine structural information at a single particle and
combination of particles. All these analyses not only can help to close the current
research gaps in the field but also can discover techniques that are time saving as well
as revealing promising and uncommon catalyst formations (Zhong et al., 2020).

Figure 8.7 Ag-decorated graphene oxide (GOSH-Ag) catalyzed decarboxylative cycloaddition.
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The following recommendations should be taken into consideration in future
research for the generation of next-generation graphene-based nanomaterials for CO2

capture and conversion (Balasubramanian & Chowdhury, 2015).
1. The maximum working capacity of graphene-based nanomaterials should be

explored in order to deploy these adsorbents in industries.
2. The issues in intrinsic constraints of process advancement of graphene-based CO2

adsorbents need to be encountered before they can be applied in a real-world CO2

capture system.
3. The orientation of CO2 molecules in the molecular structure of the graphene-based

nanomaterials should be investigated through in situ characterization techniques for
examining the correlation between the structural and chemical characteristics of an
adsorbent as well as its capability of adsorption, which further help to gain the ele-
mentary perspective of the gas adsorption mechanism in designing state-of-the art
graphene-based CO2 adsorbents.

4. A better understanding of the impact of water vapor on carbon capture would
eventually assist in the rational design of more advanced water-repellent graphene-
based CO2 adsorbents.

5. Advancement of molecular models and force fields based on actual flue gas condi-
tions is essential for screening and accessing novel graphene-based CO2 adsorbents.

6. Evaluation of engineering economics and environmental impacts associated with
graphene-based CO2 adsorbents needs to be performed using a cradle-to-grave life
cycle assessment (LCA) before the adsorbents can be applied in industries for CO2

separation from flue gases.

8.5 Conclusions

Graphene-based nanomaterials have demonstrated a potential alternative technology for
CO2 capture and conversion, and also have been considered as an emerging adsorptive
separation carbon material during recent years. This is due to the fact that graphene-
based nanomaterials possess high specific surface area and robust surface chemical activity.
Hence, the unique properties of graphene in nanomaterials have opened up new possi-
bilities to advance in this area and allow a wide spectrum of graphene nanostructure
development for the application for CO2 capture and conversion. Although much
research has been studied on graphene-based nanomaterials, there is still urgent attention
required to address the maximum working capacity and large-scale production, the
highly ordered structures of graphene for technology advancement in nanomaterials for
industrial applications, as well as to evaluate the aspects of economics and environmental
impacts that are linked for the commercial production of the graphene-based nanoma-
terials. Hence, this review focuses on the recent advances and development progress of
graphene-based nanomaterials specifically in CO2 conversion and conversion. Various
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synthesis methods of graphene nanomaterials are also illustrated here. Additionally, an
overview of different categories of graphene-based nanomaterials is presented in this
chapter. Future prospects and challenges of utilizing graphene-based nanomaterials for
CO2 capture and conversion are also explored.
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