1,422 research outputs found

    F-GAMMA: Variability Doppler factors of blazars from multiwavelength monitoring

    Get PDF
    Recent population studies have shown that the variability Doppler factors can adequately describe blazars as a population. We use the flux density variations found within the extensive radio multi-wavelength datasets of the F-GAMMA program, a total of 10 frequencies from 2.64 up to 142.33 GHz, in order to estimate the variability Doppler factors for 58 γ\gamma-ray bright sources, for 20 of which no variability Doppler factor has been estimated before. We employ specifically designed algorithms in order to obtain a model for each flare at each frequency. We then identify each event and track its evolution through all the available frequencies for each source. This approach allows us to distinguish significant events producing flares from stochastic variability in blazar jets. It also allows us to effectively constrain the variability brightness temperature and hence the variability Doppler factor as well as provide error estimates. Our method can produce the most accurate (16\% error on average) estimates in the literature to date.Comment: 9 pages, 7 figures, accepted for publication in MNRA

    Scale invariant jets: from blazars to microquasars

    Get PDF
    Black holes, anywhere in the stellar-mass to supermassive range, are often associated with relativistic jets. Models suggest that jet production may be a universal process common in all black hole systems regardless of their mass. Although in many cases observations support such hypotheses for microquasars and Seyfert galaxies, little is known on whether boosted blazar jets also comply with such universal scaling laws. We use uniquely rich multiwavelength radio light curves from the F-GAMMA program and the most accurate Doppler factors available to date to probe blazar jets in their emission rest frame with unprecedented accuracy. We identify for the first time a strong correlation between the blazar intrinsic broad-band radio luminosity and black hole mass, which extends over ∼\sim 9 orders of magnitude down to microquasars scales. Our results reveal the presence of a universal scaling law that bridges the observing and emission rest frames in beamed sources and allows us to effectively constrain jet models. They consequently provide an independent method for estimating the Doppler factor, and for predicting expected radio luminosities of boosted jets operating in systems of intermediate or tens-of-solar mass black holes, immediately applicable to cases as those recently observed by LIGO.Comment: 13 pages, 4 figures, accepted for publication in AP

    F-GAMMA: Multi-frequency radio monitoring of Fermi blazars. The 2.64 to 43 GHz Effelsberg light curves from 2007-2015

    Get PDF
    The advent of the Fermi-GST with its unprecedented capability to monitor the entire 4 pi sky within less than 2-3 hours, introduced new standard in time domain gamma-ray astronomy. To explore this new avenue of extragalactic physics the F-GAMMA programme undertook the task of conducting nearly monthly, broadband radio monitoring of selected blazars from January 2007 to January 2015. In this work we release all the light curves at 2.64, 4.85, 8.35, 10.45, 14.6, 23.05, 32, and 43 GHz and present first order derivative data products after all necessary post-measurement corrections and quality checks; that is flux density moments and spectral indices. The release includes 155 sources. The effective cadence after the quality flagging is around one radio SED every 1.3 months. The coherence of each radio SED is around 40 minutes. The released dataset includes more than 4×1044\times10^4 measurements. The median fractional error at the lowest frequencies (2.64-10.45 GHz) is below 2%. At the highest frequencies (14.6-43 GHz) with limiting factor of the atmospheric conditions, the errors range from 3% to 9%, respectively.Comment: Accepted for publication in Section: Catalogs and data of Astronomy & Astrophysic

    From Solar Proton Burning to Pionic Deuterium through the Nambu-Jona-Lasinio model of light nuclei

    Full text link
    Within the Nambu-Jona-Lasinio model of light nuclei (the NNJL model), describing strong low-energy nuclear interactions, we compute the width of the energy level of the ground state of pionic deuterium. The theoretical value fits well the experimental data. Using the cross sections for the reactions nu_e + d -> p + p + e^- and nu_e + d -> p + n + nu_e, computed in the NNJL model, and the experimental values of the events of these reactions, detected by the SNO Collaboration, we compute the boron neutrino fluxes. The theoretical values agree well with the experimental data and the theoretical predictions within the Standard Solar Model by Bahcall. We argue the applicability of the constraints on the astrophysical factor for the solar proton burning, imposed by helioseismology, to the width of the energy level of the ground state of pionic deuterium. We show that the experimental data on the width satisfy these constraints. This testifies an indirect measurement of the recommended value of the astrophysical factor for the solar proton burning in terrestrial laboratories in terms of the width of the energy level of the ground state of pionic deuterium.Comment: 10 pages, no figures, Late

    Minimal symmetric Darlington synthesis

    Get PDF
    We consider the symmetric Darlington synthesis of a p x p rational symmetric Schur function S with the constraint that the extension is of size 2p x 2p. Under the assumption that S is strictly contractive in at least one point of the imaginary axis, we determine the minimal McMillan degree of the extension. In particular, we show that it is generically given by the number of zeros of odd multiplicity of I-SS*. A constructive characterization of all such extensions is provided in terms of a symmetric realization of S and of the outer spectral factor of I-SS*. The authors's motivation for the problem stems from Surface Acoustic Wave filters where physical constraints on the electro-acoustic scattering matrix naturally raise this mathematical issue

    Comparing the aesthetic experience of classic–romantic and contemporary classical music: An interview study (Online First)

    Get PDF
    Current models of aesthetic experience of music (AEM) have emerged in the recent years capitalizing on evidence from psychology and neuroscience research, thus modeling mainly cognitive and information processes in the brain. However, a large part of the empirical research on which these models are based is related to Western tonal music, while another style of Western music, namely, contemporary classical music (CCM), has been almost neglected. CCM is often dissonant and lacks a tonal hierarchical structure, as, for example, in serial musical pieces. The current study qualitatively explored aesthetic dimensions of a CCM experience by contrasting it to classic–romantic music (CM). To this end, 16 semi-structured interviews with experts of both CCM (n = 8) and CM (n = 8) were conducted. The interview guide consisted of questions relating to physiological, affective, and cognitive dimensions of music listening. We applied qualitative content analysis on the textual material and compared the emerging main and sub-themes between the groups. Our findings show that especially the categories of expectations, physiological and emotional responses, pleasurable aspects, and, lastly, existential relevance revealed striking differences which allow us to conclude that CM and CCM afford distinguishable types of AEM in listeners
    • …
    corecore