8,324 research outputs found

    Backward stochastic differential equations associated to jump Markov processes and applications

    Get PDF
    In this paper we study backward stochastic differential equations (BSDEs) driven by the compensated random measure associated to a given pure jump Markov process X on a general state space K. We apply these results to prove well-posedness of a class of nonlinear parabolic differential equations on K, that generalize the Kolmogorov equation of X. Finally we formulate and solve optimal control problems for Markov jump processes, relating the value function and the optimal control law to an appropriate BSDE that also allows to construct probabilistically the unique solution to the Hamilton-Jacobi-Bellman equation and to identify it with the value function

    Dual and backward SDE representation for optimal control of non-Markovian SDEs

    Get PDF
    We study optimal stochastic control problem for non-Markovian stochastic differential equations (SDEs) where the drift, diffusion coefficients, and gain functionals are path-dependent, and importantly we do not make any ellipticity assumption on the SDE. We develop a controls randomization approach, and prove that the value function can be reformulated under a family of dominated measures on an enlarged filtered probability space. This value function is then characterized by a backward SDE with nonpositive jumps under a single probability measure, which can be viewed as a path-dependent version of the Hamilton-Jacobi-Bellman equation, and an extension to GG expectation

    Stochastic maximum principle for optimal control of a class of nonlinear SPDEs with dissipative drift

    Full text link
    We prove a version of the stochastic maximum principle, in the sense of Pontryagin, for the finite horizon optimal control of a stochastic partial differential equation driven by an infinite dimensional additive noise. In particular we treat the case in which the non-linear term is of Nemytskii type, dissipative and with polynomial growth. The performance functional to be optimized is fairly general and may depend on point evaluation of the controlled equation. The results can be applied to a large class of non-linear parabolic equations such as reaction-diffusion equations

    Optimal switching problems with an infinite set of modes: an approach by randomization and constrained backward SDEs

    Get PDF
    We address a general optimal switching problem over finite horizon for a stochastic system described by a differential equation driven by Brownian motion. The main novelty is the fact that we allow for infinitely many modes (or regimes, i.e. the possible values of the piecewise-constant control process). We allow all the given coefficients in the model to be path-dependent, that is, their value at any time depends on the past trajectory of the controlled system. The main aim is to introduce a suitable (scalar) backward stochastic differential equation (BSDE), with a constraint on the martingale part, that allows to give a probabilistic representation of the value function of the given problem. This is achieved by randomization of control, i.e. by introducing an auxiliary optimization problem which has the same value as the starting optimal switching problem and for which the desired BSDE representation is obtained. In comparison with the existing literature we do not rely on a system of reflected BSDE nor can we use the associated Hamilton-Jacobi-Bellman equation in our non-Markovian framework.Comment: 36 page

    Backward stochastic differential equation driven by a marked point process: An elementary approach with an application to optimal control

    Get PDF
    We address a class of backward stochastic differential equations on a bounded interval, where the driving noise is a marked, or multivariate, point process. Assuming that the jump times are totally inaccessible and a technical condition holds (see Assumption (A) below), we prove existence and uniqueness results under Lipschitz conditions on the coefficients. Some counter-examples show that our assumptions are indeed needed. We use a novel approach that allows reduction to a (finite or infinite) system of deterministic differential equations, thus avoiding the use of martingale representation theorems and allowing potential use of standard numerical methods. Finally, we apply the main results to solve an optimal control problem for a marked point process, formulated in a classical way.Comment: Published at http://dx.doi.org/10.1214/15-AAP1132 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Stochastic Maximum Principle for Optimal Control ofPartial Differential Equations Driven by White Noise

    Full text link
    We prove a stochastic maximum principle ofPontryagin's type for the optimal control of a stochastic partial differential equationdriven by white noise in the case when the set of control actions is convex. Particular attention is paid to well-posedness of the adjoint backward stochastic differential equation and the regularity properties of its solution with values in infinite-dimensional spaces

    Stochastic maximum principle for optimal control of SPDEs

    Get PDF
    In this note, we give the stochastic maximum principle for optimal control of stochastic PDEs in the general case (when the control domain need not be convex and the diffusion coefficient can contain a control variable)

    Ergodic BSDEs and related PDEs with Neumann boundary conditions under weak dissipative assumptions

    Full text link
    We study a class of ergodic BSDEs related to PDEs with Neumann boundary conditions. The randomness of the drift is given by a forward process under weakly dissipative assumptions with an invertible and bounded diffusion matrix. Furthermore, this forward process is reflected in a convex subset of Rd\R^d not necessary bounded. We study the link of such EBSDEs with PDEs and we apply our results to an ergodic optimal control problem
    corecore