595 research outputs found

    Method for applying photographic resists to otherwise incompatible substrates

    Get PDF
    A method for applying photographic resists to otherwise incompatible substrates, such as a baking enamel paint surface, is described wherein the uncured enamel paint surface is coated with a non-curing lacquer which is, in turn, coated with a partially cured lacquer. The non-curing lacquer adheres to the enamel and a photo resist material satisfactorily adheres to the partially cured lacquer. Once normal photo etching techniques are employed the lacquer coats can be easily removed from the enamel leaving the photo etched image. In the case of edge lighted instrument panels, a coat of uncured enamel is placed over the cured enamel followed by the lacquer coats and the photo resists which is exposed and developed. Once the etched uncured enamel is cured, the lacquer coats are removed leaving an etched panel

    Electrokinetic behavior of two touching inhomogeneous biological cells and colloidal particles: Effects of multipolar interactions

    Get PDF
    We present a theory to investigate electro-kinetic behavior, namely, electrorotation and dielectrophoresis under alternating current (AC) applied fields for a pair of touching inhomogeneous colloidal particles and biological cells. These inhomogeneous particles are treated as graded ones with physically motivated model dielectric and conductivity profiles. The mutual polarization interaction between the particles yields a change in their respective dipole moments, and hence in the AC electrokinetic spectra. The multipolar interactions between polarized particles are accurately captured by the multiple images method. In the point-dipole limit, our theory reproduces the known results. We find that the multipolar interactions as well as the spatial fluctuations inside the particles can affect the AC electrokinetic spectra significantly.Comment: Revised version with minor changes: References added and discussion extende

    The effect of Coulomb interaction at ferromagnetic-paramagnetic metallic perovskite junctions

    Full text link
    We study the effect of Coulomb interactions in transition metal oxides junctions. In this paper we analyze charge transfer at the interface of a three layer ferromagnetic-paramagnetic-ferromagnetic metallic oxide system. We choose a charge model considering a few atomic planes within each layer and obtain results for the magnetic coupling between the ferromagnetic layers. For large number of planes in the paramagnetic spacer we find that the coupling oscillates with the same period as in RKKY but the amplitude is sensitive to the Coulomb energy. At small spacer thickness however, large differences may appear as function of : the number of electrons per atom in the ferromagnetics and paramagnetics materials, the dielectric constant at each component, and the charge defects at the interface plane emphasizing the effects of charge transfer.Comment: tex file and 7 figure

    Electrorotation of a pair of spherical particles

    Full text link
    We present a theoretical study of electrorotation (ER) of two spherical particles under the action of a rotating electric field. When the two particles approach and finally touch, the mutual polarization interaction between the particles leads to a change in the dipole moment of the individual particle and hence the ER spectrum, as compared to that of the well-separated particles. The mutual polarization effects are captured by the method of multiple images. From the theoretical analysis, we find that the mutual polarization effects can change the characteristic frequency at which the maximum angular velocity of electrorotation occurs. The numerical results can be understood in the spectral representation theory.Comment: Minor revisions; accepted by Phys. Rev.

    Interplay of magnetic order and Jahn-Teller distortion in a model with strongly correlated electron system

    Full text link
    The Hubbard model has been employed successfully to understand many aspects of correlation driven physical properties, in particular, the magnetic order in itenerant electron systems. In some systems such as Heusler alloys, manganites etc., it is known that, in addition to magnetic order, distortion induced by Jahn-Teller(J-T) effect also exists. In this paper, based on two-fold degenerate Hubbard model, the influence of magnetic order on J-T distortion is investigated. The electron correlation is treated using a spectral density approach and J-T interaction is added to the model. We find that magnetic order and structural distortion coexist at low temperature TT for a certain range of electron correlation strength UU, J-T coupling strength GG and band occupation nn. At T=0, for a given nn and UU, magnetic order is present but distortion appears only for a GG larger than a critical value. We also studied the temperature dependence of lattice strain and magnetization choosing a GG close to the critical value.Comment: 12 pages, 5 Figures. Physica- B 405 1701-1705 (2010

    Synthesis, characterization, monolayer assembly and 2D lanthanide coordination of a linear terphenyl-di(propiolonitrile) linker on Ag(111)

    Get PDF
    As a continuation of our work employing polyphenylene-dicarbonitrile molecules and in particular the terphenyl derivative 1 (TDCN), we have synthesized a novel ditopic terphenyl-4,4"-di(propiolonitrile) (2) linker for the self-assembly of organic monolayers and metal coordination at interfaces. The structure of the organic linker 2 was confirmed by single crystal X-ray diffraction analysis (XRD). On the densely packed Ag(111) surface, the terphenyl-4,4"-di(propiolonitrile) linkers self-assemble in a regular, molecular chevron arrangement exhibiting a Moiré pattern. After the exposure of the molecular monolayer to a beam of Gd atoms, the propiolonitrile groups get readily involved in metal–ligand coordination interactions. Distinct coordination motifs evolve with coordination numbers varying between three and six for the laterally-bound Gd centers. The linker molecules retain an overall flat adsorption geometry. However, only networks with restricted local order were obtained, in marked contrast to previously employed, simpler polyphenylene-dicarbonitrile 1 linkers

    First-Principles Approach to Electrorotation Assay

    Full text link
    We have presented a theoretical study of electrorotation assay based on the spectral representation theory. We consider unshelled and shelled spheroidal particles as an extension to spherical ones. From the theoretical analysis, we find that the coating can change the characteristic frequency at which the maximum rotational angular velocity occurs. The shift in the characteristic frequency is attributed to a change in the dielectric properties of the bead-coating complex with respect to those of the uncoated particles. By adjusting the dielectric properties and the thickness of the coating, it is possible to obtain good agreement between our theoretical predictions and the assay data.Comment: 17 pages, 4 eps figures; minor revisions, accepted for publications by J. Phys.: Condens. Matte

    Single-molecule magnet behavior in 2,2 \u27-bipyrimidine-bridged dilanthanide complexes

    Get PDF
    A series of 2,2’-bipyrimidine-bridged dinuclear lanthanide complexes with the general formula [Ln(tmhd)3]2bpm (tmhd = 2,2,6,6-tetramethyl-3,5-heptanedionate, bpm = 2,2’-bipyrimidine, Ln = Gd(III), 1; Tb(III), 2; Dy(III), 3; Ho(III), 4 and Er(III), 5) has been synthesized and characterized. Sublimation of [Tb(tmhd)3]2bpm onto a Au(111) surface leads to the formation of a homogeneous film with hexagonal pattern, which was studied by scanning tunneling microscopy (STM). The bulk magnetic properties of all complexes have been studied comprehensively. The dynamic magnetic behavior of the Dy(III) and Er(III) compounds clearly exhibits single molecule magnet (SMM) characteristics with an energy barrier of 97 and 25 K, respectively. Moreover, micro-SQUID measurements on single crystals confirm their SMM behavior with the presence of hysteresis loops
    • …
    corecore