139 research outputs found

    Inhibitory Receptors Beyond T Cell Exhaustion.

    Get PDF
    Inhibitory receptors (iRs) are frequently associated with "T cell exhaustion". However, the expression of iRs is also dependent on T cell differentiation and activation. Therapeutic blockade of various iRs, also referred to as "checkpoint blockade", is showing -unprecedented results in the treatment of cancer patients. Consequently, the clinical potential in this field is broad, calling for increased research efforts and rapid refinements in the understanding of iR function. In this review, we provide an overview on the significance of iR expression for the interpretation of T cell functionality. We summarize how iRs have been strongly associated with "T cell exhaustion" and illustrate the parallel evidence on the importance of T cell differentiation and activation for the expression of iRs. The differentiation subsets of CD8 T cells (naïve, effector, and memory cells) show broad and inherent differences in iR expression, while activation leads to strong upregulation of iRs. Therefore, changes in iR expression during an immune response are often concomitant with T cell differentiation and activation. Sustained expression of iRs in chronic infection and in the tumor microenvironment likely reflects a specialized T cell differentiation. In these situations of prolonged antigen exposure and chronic inflammation, T cells are "downtuned" in order to limit tissue damage. Furthermore, we review the novel "checkpoint blockade" treatments and the potential of iRs as biomarkers. Finally, we provide recommendations for the immune monitoring of patients to interpret iR expression data combined with parameters of activation and differentiation of T cells

    Large T Antigen-Specific Cytotoxic T Cells Protect Against Dendritic Cell Tumors through Perforin-Mediated Mechanisms Independent of CD4 T Cell Help.

    Get PDF
    Our newly generated murine tumor dendritic cell (MuTuDC) lines, generated from tumors developing in transgenic mice expressing the simian virus 40 large T antigen (SV40LgT) and GFP under the DC specific promoter CD11c, reproduce the phenotypic and functional properties of splenic wild type CD8α(+) conventional DCs. They have an immature phenotype with low co-stimulation molecule expression (CD40, CD70, CD80, and CD86) that is upregulated after activation with toll-like receptor ligands. We observed that after transfer into syngeneic C57BL/6 mice, MuTuDC lines were quickly rejected. Tumors grew efficiently in large T transgene-tolerant mice. To investigate the immune response toward the large T antigen that leads to rejection of the MuTuDC lines, they were genetically engineered by lentiviral transduction to express luciferase and tested for the induction of DC tumors after adoptive transfer in various gene deficient recipient mice. Here, we document that the MuTuDC line was rejected in C57BL/6 mice by a CD4 T cell help-independent, perforin-mediated CD8 T cell response to the SV40LgT without pre-activation or co-injection of adjuvants. Using depleting anti-CD8β antibodies, we were able to induce efficient tumor growth in C57BL/6 mice. These results are important for researchers who want to use the MuTuDC lines for in vivo studies

    Inhibitory Receptor Expression Depends More Dominantly on Differentiation and Activation than "Exhaustion" of Human CD8 T Cells.

    Get PDF
    Under conditions of chronic antigen stimulation, such as persistent viral infection and cancer, CD8 T cells may diminish effector function, which has been termed "exhaustion." Expression of inhibitory Receptors (iRs) is often regarded as a hallmark of "exhaustion." Here we studied the expression of eight different iRs by CD8 T cells of healthy humans, including CTLA-4, PD1, TIM3, LAG3, 2B4, BTLA, CD160, and KLRG1. We show that many iRs are expressed upon activation, and with progressive differentiation to effector cells, even in absence of long-term ("chronic") antigenic stimulation. In particular, we evaluated the direct relationship between iR expression and functionality in CD8 T cells by using anti-CD3 and anti-CD28 stimulation to stimulate all cells and differentiation subsets. We observed a striking up-regulation of certain iRs following the cytokine production wave, in agreement with the notion that iRs function as a negative feedback mechanism. Intriguingly, we found no major impairment of cytokine production in cells positive for a broad array of iRs, as previously shown for PD1 in healthy donors. Rather, the expression of the various iRs strongly correlated with T cell differentiation or activation states, or both. Furthermore, we analyzed CD8 T cells from lymph nodes (LNs) of melanoma patients. Interestingly, we found altered iR expression and lower cytokine production by T cells from metastatic LNs, but also from non-metastatic LNs, likely due to mechanisms which are not related to exhaustion. Together, our data shows that expression of iRs per se does not mark dysfunctional cells, but is rather tightly linked to activation and differentiation. This study highlights the importance of considering the status of activation and differentiation for the study and the clinical monitoring of CD8 T cells

    Identification of a superagonist variant of the immunodominant Yellow fever virus epitope NS4b214-222 by combinatorial peptide library screening

    Get PDF
    The CD8 T cell response to the HLA-A2-restricted epitope LLWNGPMAV (LLW) of the non-structural protein 4b of Yellow Fever Virus (YFV) is remarkably immunodominant, highly prevalent and powerful in YFV-vaccinated humans. Here we used a combinatorial peptide library screening in the context of an A2/LLW-specific CD8 T cell clone to identify a superagonist that features a methionine to isoleucine substitution at position 7. Based on in silico modeling, the functional enhancement of this LLW-7I mutation was associated with alterations in the structural dynamics of the peptide in the major histocompatibility complex (pMHC) binding with the T cell receptor (TCR). While the TCR off-rate of LLW-7I pMHC is comparable to the wild type peptide, the rigidity of the 7I peptide seems to confer less entropy loss upon TCR binding. This LLW-7I superagonist is an example of improved functionality in human CD8 T cells associated with optimized ligand rigidity for TCR binding and not with changes in TCR:pMHC off-rate kinetics

    Long-lasting stem cell-like memory CD8+ T cells with a naïve-like profile upon yellow fever vaccination.

    Get PDF
    Efficient and persisting immune memory is essential for long-term protection from infectious and malignant diseases. The yellow fever (YF) vaccine is a live attenuated virus that mediates lifelong protection, with recent studies showing that the CD8(+) T cell response is particularly robust. Yet, limited data exist regarding the long-term CD8(+) T cell response, with no studies beyond 5 years after vaccination. We investigated 41 vaccinees, spanning 0.27 to 35 years after vaccination. YF-specific CD8(+) T cells were readily detected in almost all donors (38 of 41), with frequencies decreasing with time. As previously described, effector cells dominated the response early after vaccination. We detected a population of naïve-like YF-specific CD8(+) T cells that was stably maintained for more than 25 years and was capable of self-renewal ex vivo. In-depth analyses of markers and genome-wide mRNA profiling showed that naïve-like YF-specific CD8(+) T cells in vaccinees (i) were distinct from genuine naïve cells in unvaccinated donors, (ii) resembled the recently described stem cell-like memory subset (Tscm), and (iii) among all differentiated subsets, had profiles closest to naïve cells. Our findings reveal that CD8(+) Tscm are efficiently induced by a vaccine in humans, persist for decades, and preserve a naïveness-like profile. These data support YF vaccination as an optimal mechanistic model for the study of long-lasting memory CD8(+) T cells in humans

    A Well-Controlled Experimental System to Study Interactions of Cytotoxic T Lymphocytes with Tumor Cells.

    Get PDF
    While T cell-based immunotherapies are steadily improving, there are still many patients who progress, despite T cell-infiltrated tumors. Emerging evidence suggests that T cells themselves may provoke immune escape of cancer cells. Here, we describe a well-controlled co-culture system for studying the dynamic T cell - cancer cell interplay, using human melanoma as a model. We explain starting material, controls, and culture parameters to establish reproducible and comparable cultures with highly heterogeneous tumor cells. Low passage melanoma cell lines and melanoma-specific CD8+ T cell clones generated from patient blood were cultured together for up to 3 days. Living melanoma cells were isolated from the co-culture system by fluorescence-activated cell sorting. We demonstrate that the characterization of isolated melanoma cells is feasible using flow cytometry for protein expression analysis as well as an Agilent whole human genome microarray and the NanoString technology for differential gene expression analysis. In addition, we identify five genes (ALG12, GUSB, RPLP0, KRBA2, and ADAT2) that are stably expressed in melanoma cells independent of the presence of T cells or the T cell-derived cytokines IFNγ and TNFα. These genes are essential for correct normalization of gene expression data by NanoString. Further to the characterization of melanoma cells after exposure to CTLs, this experimental system might be suitable to answer a series of questions, including how the affinity of CTLs for their target antigen influences the melanoma cell response and whether CTL-induced gene expression changes in melanoma cells are reversible. Taken together, our human T cell - melanoma cell culture system is well suited to characterize immune-related mechanisms in cancer cells

    T cell receptor alpha variable 12-2 bias in the immunodominant response to Yellow fever virus.

    Get PDF
    The repertoire of human αβ T-cell receptors (TCRs) is generated via somatic recombination of germline gene segments. Despite this enormous variation, certain epitopes can be immunodominant, associated with high frequencies of antigen-specific T cells and/or exhibit bias toward a TCR gene segment. Here, we studied the TCR repertoire of the HLA-A*0201-restricted epitope LLWNGPMAV (hereafter, A2/LLW) from Yellow Fever virus, which generates an immunodominant CD8 <sup>+</sup> T cell response to the highly effective YF-17D vaccine. We discover that these A2/LLW-specific CD8 <sup>+</sup> T cells are highly biased for the TCR α chain TRAV12-2. This bias is already present in A2/LLW-specific naïve T cells before vaccination with YF-17D. Using CD8 <sup>+</sup> T cell clones, we show that TRAV12-2 does not confer a functional advantage on a per cell basis. Molecular modeling indicated that the germline-encoded complementarity determining region (CDR) 1α loop of TRAV12-2 critically contributes to A2/LLW binding, in contrast to the conventional dominant dependence on somatically rearranged CDR3 loops. This germline component of antigen recognition may explain the unusually high precursor frequency, prevalence and immunodominance of T-cell responses specific for the A2/LLW epitope

    Sepsis in PD-1 light

    Full text link
    Increasing evidence suggests that after the first pro-inflammatory hours, sepsis is characterized by the occurrence of severe immunosuppression. Several mechanisms have been reported to participate in sepsis-induced immune alterations affecting both innate and adaptive immunity. Of these, the concept of ‘cell exhaustion’ has gained a lot of interest because some parallels can be drawn with the cancer field in which immunostimulation approaches through blocking immune checkpoints currently obtain remarkable success. Herein, perspectives regarding co-inhibitory receptors’ contribution to lymphocyte exhaustion in sepsis will be discussed in the context of a recently published study investigating the potential of PD-1 molecule expression (i.e. PD-1 on lymphocytes, PD-L1 on monocytes) to predict mortality in septic shock patients

    Replicating viral vector platform exploits alarmin signals for potent CD8<sup>+</sup> T cell-mediated tumour immunotherapy.

    Get PDF
    Viral infections lead to alarmin release and elicit potent cytotoxic effector T lymphocyte (CTL &lt;sup&gt;eff&lt;/sup&gt; ) responses. Conversely, the induction of protective tumour-specific CTL &lt;sup&gt;eff&lt;/sup&gt; and their recruitment into the tumour remain challenging tasks. Here we show that lymphocytic choriomeningitis virus (LCMV) can be engineered to serve as a replication competent, stably-attenuated immunotherapy vector (artLCMV). artLCMV delivers tumour-associated antigens to dendritic cells for efficient CTL priming. Unlike replication-deficient vectors, artLCMV targets also lymphoid tissue stroma cells expressing the alarmin interleukin-33. By triggering interleukin-33 signals, artLCMV elicits CTL &lt;sup&gt;eff&lt;/sup&gt; responses of higher magnitude and functionality than those induced by replication-deficient vectors. Superior anti-tumour efficacy of artLCMV immunotherapy depends on interleukin-33 signalling, and a massive CTL &lt;sup&gt;eff&lt;/sup&gt; influx triggers an inflammatory conversion of the tumour microenvironment. Our observations suggest that replicating viral delivery systems can release alarmins for improved anti-tumour efficacy. These mechanistic insights may outweigh safety concerns around replicating viral vectors in cancer immunotherapy
    corecore