39 research outputs found

    HK-2: An immortalized proximal tubule epithelial cell line from normal adult human kidney

    Get PDF
    HK-2: An immortalized proximal tubule epithelial cell line from normal adult human kidney. Studies assessing mechanisms of proximal tubular cell (PTC) physiology and pathophysiology increasingly utilize cell culture systems to avoid the complexity of whole organ/whole animal experiments. However, no well-differentiated PTC line derived from adult human kidney currently exists. Therefore, the goal of this research was to establish such a line by transduction with human papilloma virus (HPV 16) E6/E7 genes. A primary PTC culture from normal adult human renal cortex was exposed to a recombinant retrovirus containing the HPV 16 E6/E7 genes, resulting in a cell line designated HK-2 (human kidney-2) which has grown continuously in serum free media for more than one year. HK-2 cell growth is epidermal growth factor dependent and the cells retain a phenotype indicative of well-differentiated PTCs (positive for alkaline phosphatase, gamma glutamyltranspeptidase, leucine aminopeptidase, acid phosphatase, cytokeratin, α3β1 integrin, fibronectin; negative for factor VHI-related antigen, 6.19 antigen and CALLA endopeptidase). Furthermore, HK-2 cells retain functional characteristics of proximal tubular epithelium (Na+ dependent/phlorizin sensitive sugar transport; adenylate cyclase responsiveness to parathyroid, but not to antidiuretic, hormone). The E6/E7 genes are present in the HK-2 genome, as determined by PCR. To assess its potential usefulness as a tool for studying injury and repair, HK-2 cells were exposed to a toxic concentration of H2O2 ± iron chelation (deferoxamine) or hydroxyl radical scavenger (Na benzoate) therapy. Only the former blocked H2O2 cytotoxicity, reproducing results previously obtained with freshly isolated rat proximal tubular segments. In conclusion, an immortalized adult human PTC line has been established by transduction with HPV 16 E6/E7 genes. It appears to be well-differentiated on the basis of its histochemical, immune cytochemical, and functional characteristics, and it can reproduce experimental results obtained with freshly isolated PTCs. Thus, this new PTC line could have substantial research application

    Continued Neurogenesis in Adult Drosophila as a Mechanism for Recruiting Environmental Cue-Dependent Variants

    Get PDF
    Background The skills used by winged insects to explore their environment are strongly dependent upon the integration of neurosensory information comprising visual, acoustic and olfactory signals. The neuronal architecture of the wing contains a vast array of different sensors which might convey information to the brain in order to guide the trajectories during flight. In Drosophila, the wing sensory cells are either chemoreceptors or mechanoreceptors and some of these sensors have as yet unknown functions. The axons of these two functionally distinct types of neurons are entangled, generating a single nerve. This simple and accessible coincidental signaling circuitry in Drosophila constitutes an excellent model system to investigate the developmental variability in relation to natural behavioral polymorphisms. Methodology/Principal Findings A fluorescent marker was generated in neurons at all stages of the Drosophila life cycle using a highly efficient and controlled genetic recombination system that can be induced in dividing precursor cells (MARCM system, flybase web site). It allows fluorescent signals in axons only when the neuroblasts and/or neuronal cell precursors like SOP (sensory organ precursors) undergo division during the precedent steps. We first show that a robust neurogenesis continues in the wing after the adults emerge from the pupae followed by an extensive axonal growth. Arguments are presented to suggest that this wing neurogenesis in the newborn adult flies was influenced by genetic determinants such as the frequency dependent for gene and by environmental cues such as population density. Conclusions We demonstrate that the neuronal architecture in the adult Drosophila wing is unfinished when the flies emerge from their pupae. This unexpected developmental step might be crucial for generating non-heritable variants and phenotypic plasticity. This might therefore constitute an advantage in an unstable ecological system and explain much regarding the ability of Drosophila to robustly adapt to their environment

    Induction of G0/G1 cell cycle arrest in ovarian carcinoma cells by the anti-inflammatory drug NS-398, but not by COX-2-specific RNA interference

    No full text
    Cyclooxygenases, particularly COX-2, play an important role in tumor development and progression. We have previously shown that COX-2 expression is an independent prognostic factor in human ovarian carcinoma. In this study, we investigated the effects of the inhibition of COX isoforms by the NSAID NS-398 as well as by COX-isoform-specific RNA interference (RNAi) in the human ovarian carcinoma cell lines OVCAR-3 and SKOV-3. OVCAR-3 cells showed a constitutive expression of COX-1 and an induction of high levels of COX-2 and PGE2 after stimulation with interleukin-1{beta}. In contrast, SKOV-3 cells were negative for both COX isoforms. In OVCAR-3 cells, PGE2 production was inhibited by NS-398 in concentrations of 1 {my}M and by a COX-2-specific silencing RNA (siRNA), while a COX-1-specific siRNA did not have an effect. This suggests that COX-2 is the major source of PGE(2) in this cell line. To dissociate COX-2-specific and non-COX-2-specific effects on cell proliferation, a proliferation assay was performed after incubation of cells with NS-398 and COX siRNAs. NS-398 induced an inhibition of cell proliferation at concentrations of 50–500 {my}M, which are above the concentrations needed for the inhibition of PGE2 production. This inhibitory effect was present in the COX-positive cell line OVCAR-3 as well as in the COX-negative cell line SKOV-3 and could not be reverted by addition of exogenous PGE2. Neither COX-1- nor COX-2-specific siRNAs had an effect on cell proliferation of OVCAR-3 cells. Cell cycle analysis showed an increased accumulation of cells in the G0/G1 phase after treatment with NS-398, but not with COX siRNAs. These experiments suggest that NS-398 reduced cell proliferation in ovarian carcinoma cells by induction of G0/G1 cell cycle arrest independent of COX-2 inhibition. Our study shows that specific inhibition of COX isoforms by RNAi could be used to dissociate effects of NSAIDs. Furthermore, our results suggest that cell cycle arrest is one of the primary mechanisms responsible for the antiproliferative effects of NS-398 on ovarian carcinoma cells

    G protein subtype–specific signaling bias in a series of CCR5 chemokine analogs

    No full text
    Chemokine analogs targeting CCR5 were identified that show G protein-subtype ligand bias and can enhance and attenuate CCR5-mediated Gq signaling while maintaining Gi/o signaling

    Cognitive Performance Across the Life Course of Bolivian Forager-Farmers With Limited Schooling

    Get PDF
    Cognitive performance is characterized by at least two distinct life course trajectories. Many cognitive abilities (e.g., “effortful processing” abilities, including fluid reasoning and processing speed) improve throughout early adolescence and start declining in early adulthood, whereas other abilities (e.g., “crystallized” abilities like vocabulary breadth) improve throughout adult life, remaining robust even at late ages. Although schooling may impact performance and cognitive “reserve,” it has been argued that these age patterns of cognitive performance are human universals. Here we examine age patterns of cognitive performance among Tsimane forager-horticulturalists of Bolivia and test whether schooling is related to differences in cognitive performance over the life course to assess models of active versus passive cognitive reserve. We used a battery of eight tasks to assess a range of latent cognitive traits reflecting attention, processing speed, verbal declarative memory, and semantic fluency (n 919 individuals, 49.9% female). Tsimane cognitive abilities show similar age-related differences as observed in industrialized populations: higher throughout adolescence and only slightly lower in later adulthood for semantic fluency but substantially lower performance beginning in early adulthood for all other abilities. Schooling is associated with greater cognitive abilities at all ages controlling for sex but has no attenuating effect on cognitive performance in late adulthood, consistent with models of passive cognitive reserve. We interpret the minimal attenuation of semantic fluency late in life in light of evolutionary theories of postreproductive life span, which emphasize indirect fitness contributions of older adults through the transfer of information, labor, and food to descendant kin

    Ectopic expression of the erythrocyte band 3 anion exchange protein, using a new avian retrovirus vector.

    No full text
    A retrovirus vector was constructed from the genome of avian erythroblastosis virus ES4. The v-erbA sequences of avian erythroblastosis virus were replaced by those coding for neomycin phosphotransferase, creating a gag-neo fusion protein which provides G418 resistance as a selectable marker. The v-erbB sequences following the splice acceptor were replaced by a cloning linker allowing insertion of foreign genes. The vector has been tested in conjunction with several helper viruses for the transmission of G418 resistance, titer, stability, transcription, and the transduction and expression of foreign genes in both chicken embryo fibroblasts and the QT6 quail cell line. The results show that the vector is capable of producing high titers of Neor virus from stably integrated proviruses. These proviruses express a balanced ratio of genome length to spliced transcripts which are efficiently translated into protein. Using the Escherichia coli beta-galactosidase gene cloned into the vector as a test construct, expression of enzyme activity could be detected in 90 to 95% of transfected target cells and in 80 to 85% of subsequently infected cells. In addition, a cDNA encoding the avian erythrocyte band 3 anion exchange protein has been expressed from the vector in both chicken embryo fibroblasts and QT6 cells and appears to function as an active, plasma membrane-based anion transporter. The ectopic expression of band 3 protein provides a visual marker for vector function in these cells
    corecore