9 research outputs found

    Activation of toll-like receptors and inflammasome complexes in the diabetic cardiomyopathy-associated inflammation

    Get PDF
    Diabetic cardiomyopathy is defined as a ventricular dysfunction initiated by alterations in cardiac energy substrates in the absence of coronary artery disease and hypertension. Hyperglycemia, hyperlipidemia, and insulin resistance are major inducers of the chronic low-grade inflammatory state that characterizes the diabetic heart. Cardiac Toll-like receptors and inflammasome complexes may be key inducers for inflammation probably through NF- κ B activation and ROS overproduction. However, metabolic dysregulated factors such as peroxisome proliferator-activated receptors and sirtuins may serve as therapeutic targets to control this response by mitigating both Toll-like receptors and inflammasome signalingThis work was supported by National Grants fromMinisterio de Educación y Ciencia (SAF2009-08367), Comunidad de Madrid (CCG10-UAM/BIO-5289), and FISS (PI10/00072

    Mapping of Genomic Vulnerabilities in the Post-Translational Ubiquitination, SUMOylation and Neddylation Machinery in Breast Cancer

    Get PDF
    © 2021 by the authors.The dysregulation of post-translational modifications (PTM) transversally impacts cancer hallmarks and constitutes an appealing vulnerability for drug development. In breast cancer there is growing preclinical evidence of the role of ubiquitin and ubiquitin-like SUMO and Nedd8 peptide conjugation to the proteome in tumorigenesis and drug resistance, particularly through their interplay with estrogen receptor signaling and DNA repair. Herein we explored genomic alterations in these processes using RNA-seq and mutation data from TCGA and METABRIC datasets, and analyzed them using a bioinformatic pipeline in search of those with prognostic and predictive capability which could qualify as subjects of drug research. Amplification of UBE2T, UBE2C, and BIRC5 conferred a worse prognosis in luminal A/B and basal-like tumors, luminal A/B tumors, and luminal A tumors, respectively. Higher UBE2T expression levels were predictive of a lower rate of pathological complete response in triple negative breast cancer patients following neoadjuvant chemotherapy, whereas UBE2C and BIRC5 expression was higher in luminal A patients with tumor relapse within 5 years of endocrine therapy or chemotherapy. The transcriptomic signatures of USP9X and USP7 gene mutations also conferred worse prognosis in luminal A, HER2-enriched, and basal-like tumors, and in luminal A tumors, respectively. In conclusion, we identified and characterized the clinical value of a group of genomic alterations in ubiquitination, SUMOylation, and neddylation enzymes, with potential for drug development in breast cancer.Work in Alberto Ocaña’s lab is supported by the Instituto de Salud Carlos III (ISCIII, PI19/00808); ACEPAIN; Diputación de Albacete; and the CRIS Cancer Foundation. Work in Atanasio Pandiella’s lab is supported by the Ministry of Economy and Competitiveness of Spain (BFU2015- 71371-R, the Junta de Castilla y León (CSI146P20), and the CRIS Foundation. Balázs Györffy is financed by the 2018-2.1.17-TET-KR-00001 grant and by the Higher Education Institutional Excellence Programme of the Ministry for Innovation and Technology (MIT) in Hungary, within the framework of the Bionic thematic programme of the Semmelweis University

    Genomic mapping of splicing-related genes identify amplifications in lsm1, clns1a, and ilf2 in luminal breast cancer

    Get PDF
    © 2021 by the authors.Alternative splicing is an essential biological process, which increases the diversity and complexity of the human transcriptome. In our study, 304 splicing pathway-related genes were evaluated in tumors from breast cancer patients (TCGA dataset). A high number of alterations were detected, including mutations and copy number alterations (CNAs), although mutations were less frequently present compared with CNAs. In the four molecular subtypes, 14 common splice genes showed high level amplification in >5% of patients. Certain genes were only amplified in specific breast cancer subtypes. Most altered genes in each molecular subtype clustered to a few chromosomal regions. In the Luminal subtype, amplifications of LSM1, CLNS1A, and ILF2 showed a strong significant association with prognosis. An even more robust association with OS and RFS was observed when expression of these three genes was combined. Inhibition of LSM1, CLNS1A, and ILF2, using siRNA in MCF7 and T47D cells, showed a decrease in cell proliferation. The mRNA expression of these genes was reduced by treatment with BET inhibitors, a family of epigenetic modulators. We map the presence of splicing-related genes in breast cancer, describing three novel genes, LSM1, CLNS1A, and ILF2, that have an oncogenic role and can be modulated with BET inhibitors.A.O.’s lab is supported by the Instituto de Salud Carlos III (ISCIII, PI19/00808); ACEPAIN; CRIS Cancer Foundation and Diputación de Albacete. This research is also supported by PI18/01020 from the Instituto de Salud Carlos III and co-financed by the European Development Regional Fund (FEDER) “A way to achieve Europe” (ERDF); N.L. MDM was supported by the Spanish Ministry of Education (FPU grant; Ref.: FPU18/01319). B.G. was financed by the 2018-2.1.17-TETKR-00001, 2020-1.1.6-JÖVO-2021-00013, and 2018-1.3.1-VKE-2018-00032 grants and by the Higher ˝ Education Institutional Excellence Programme (2020-4.1.1.-TKP2020) of the Ministry for Innovation and Technology in Hungary

    Targeting metabolic disturbance in the diabetic heart

    No full text
    Diabetic cardiomyopathy is defined as ventricular dysfunction initiated by alterations in cardiac energy substrates in the absence of coronary artery disease and hypertension. In addition to the demonstrated burden of cardiovascular events associated with diabetes, diabetic cardiomyopathy partly explains why diabetic patients are subject to a greater risk of heart failure and a worse outcome after myocardial ischemia. The raising prevalence and accumulating costs of cardiovascular disease in diabetic patients underscore the deficiencies of tertiary prevention and call for a shift in medical treatment. It is becoming increasingly clearer that the effective prevention and treatment of diabetic cardiomyopathy require measures to regulate the metabolic derangement occurring in the heart rather than merely restoring suitable systemic parameters. Recent research has provided deeper insight into the metabolic etiology of diabetic cardiomyopathy and numerous heart-specific targets that may substitute or reinforce current strategies. From both experimental and translational perspectives, in this review we first discuss the progress made with conventional therapies, and then focus on the need for prospective metabolic targets that may avert myocardial vulnerability and functional decline in next-generation diabetic careThis work was supported by national grants from Ministerio de Educación y Ciencia (SAF2009-08367) and Comunidad de Madrid (CCG10-UAM/BIO-5289)

    Prognostic value of Lymphocyte-Activation Gene 3 (LAG3) in cancer: A meta-analysis

    Get PDF
    [Introduction]: Therapeutic targeting of inhibitors of the immune response has reached the clinical setting. Inhibitors of the novel receptor LAG3, which negatively regulates T-cell activation, are under investigation. Here we explore the presence and prognostic role of LAG3 in cancer.[Methods]: A systematic search of electronic databases identified publications exploring the effect of LAG3 on overall survival (OS) and (for early-stage cancers) disease-free survival (DFS). Hazard ratios (HR) were pooled in a meta-analysis using generic inverse-variance and random effect modeling. Subgroup analyses were conducted based on disease site and tumor type.[Results]: Fifteen studies met the inclusion criteria. LAG3 was associated with better overall survival [HR 0.81, 95% confidence interval (CI) 0.66–0.99; P = 0.04], with subgroup analysis showing no significant differences between disease-site subgroups. The beneficial effect of LAG3 on OS was of greater magnitude in early-stage malignancies (HR 0.73, 95% CI 0.60–0.88) than in the metastatic setting (HR 1.20, 95% CI 0.70–2.05), but this difference was not statistically significant (subgroup difference p = 0.18). LAG3 did not have a significant association with DFS [HR 1.02, 95% confidence interval (CI) 0.77–1.37; P = 0.87], with subgroup analysis showing worse DFS in patients with lymphoma and improved DFS in those with breast cancer.[Conclusions]: High expression of LAG3 is associated with favorable overall survival in several solid tumors. A trend toward an association in early-stage disease suggests the importance of immune surveillance in this setting.Peer reviewe

    Adoptive Cell Therapy in Breast Cancer: A Current Perspective of Next-Generation Medicine

    No full text
    © 2020 Fuentes-Antrás, Guevara-Hoyer, Baliu-Piqué, García-Sáenz, Pérez-Segura, Pandiella and Ocaña.Immunotherapy has become a cornerstone in the treatment of cancer and changed the way clinicians and researchers approach tumor vulnerabilities. Durable responses are commonly observed with immune checkpoint inhibitors in highly immunogenic tumors, while the infusion of T cells genetically engineered to express chimeric antigen receptors (CARs) has shown impressive efficacy in certain types of blood cancer. Nevertheless, harnessing our own immunity has not proved successful for most breast cancer patients. In the era of genomic medicine, cellular immunotherapies may provide a more personalized and dynamic tool against tumors displaying heterogeneous mutational landscapes and antigenic pools. This approach encompasses multiple strategies including the adoptive transfer of tumor-infiltrating lymphocytes, dendritic cells, natural killer cells, and engineered immune components such as CAR constructs and engineered T cell receptors. Although far from permeating the clinical setting, technical advances have been overwhelming in recent years, with continuous improvement in traditional challenges such as toxicity, adoptive cell persistence, and intratumoral trafficking. Also, there is an avid search for neoantigens that can be targeted by these strategies, either alone or in combination. In this work, we aim to provide a clinically-oriented overview of preclinical and clinical data regarding the use of cellular immunotherapies in breast cancer

    Genomic correlates of dna damage in breast cancer subtypes

    No full text
    © 2021 by the authors.Among the described druggable vulnerabilities, acting on the DNA repair mechanism has gained momentum, with the approval of PARP inhibitors in several indications, including breast cancer. However, beyond the mere presence of BRCA1/BRCA2 mutations, the identification of additional biomarkers that would help to select tumors with an extreme dependence on DNA repair machinery would help to stratify therapeutic decisions. Gene set enrichment analyses (GSEA) using public datasets evaluating expression values between normal breast tissue and breast cancer identified a set of upregulated genes. Genes included in different pathways, such as ATM/ATR, BARD1, and Fanconi Anemia, which are involved in the DNA damage response, were selected and confirmed using molecular alterations data contained at cBioportal. Nineteen genes from these gene sets were identified to be amplified and upregulated in breast cancer but only five of them NBN, PRKDC, RFWD2, UBE2T, and YWHAZ meet criteria in all breast cancer molecular subtypes. Correlation of the selected genes with prognosis (relapse free survival, RFS, and overall survival, OS) was performed using the KM Plotter Online Tool. In last place, we selected the best signature of genes within this process whose upregulation can be indicative of a more aggressive phenotype and linked with worse outcome. In summary, we identify genomic correlates within DNA damage pathway associated with prognosis in breast cancer.We would like to thank our funding institutions, Instituto de Salud Carlos III, Diputación de Albacete, AECC Foundation, Ministry of Economy and Competitiveness of Spain, the Spanish Cancer Centers Network Program, and the European Commission as the FEDER funding program responsible institution. We would like to especially thank our supporting foundations, such as the “Asociación Costuras en la Piel en Apoyo a la investigación de cáncer en Albacete” (ACEPAIN) and the Cris Cancer Foundation for their continuous efforts to support our work

    Exploring gastric cancer genetics: A turning point in common variable immunodeficiency

    No full text
    Background: Gastric cancer (GC) stands as a prominent cause of cancer-related mortality and ranks second among the most frequently diagnosed malignancies in individuals with common variable immunodeficiency (CVID). Objective: We sought to conduct a comprehensive, large-scale genetic analysis to explore the CVID-associated germline variant landscape within gastric adenocarcinoma samples and to seek to delineate the transcriptomic similarities between GC and CVID. Methods: We investigated the presence of CVID-associated germline variants in 1591 GC samples and assessed their impact on tumor mutational load. The progression of GC was evaluated in patients with and without these variants. Transcriptomic similarities were explored by matching differentially expressed genes in GC to healthy gastric tissue with a CVID transcriptomic signature. Results: CVID-associated germline variants were found in 60% of GC samples. Our analysis revealed a significant association between the presence of CVID-related genetic variants and higher tumor mutational load in GC (P < .0001); high GC mutational load seems to be linked to immunotherapy response and worse prognosis. Transcriptomic similarities unveiled key genes and pathways implicated in innate immune responses and tumorigenesis. We identified upregulated genes related to oncogene drivers, inflammation, tumor suppression, DNA repair, and downregulated immunomodulatory genes shared between GC and CVID. Conclusions: Our findings contribute to a deeper understanding of potential molecular modulators of GC and shed light on the intricate interplay between immunodeficiency and cancer. This study underscores the clinical relevance of CVID-related variants in influencing GC progression and opens avenues for further exploration into novel therapeutic approaches
    corecore