10,274 research outputs found

    Additions, combinations, and synonyms for the Bolivian moss flora

    Get PDF
    Fifty-five mosses are newly recorded for Bolivia. Additional collection data are given for twelve mosses considered little known or rare in the country. Six new synonyms are recognized, five from Bolivia, one from Brazil: Hookeria scabripes Müll. Hal. [Callicostella scabripes (Müll. Hal.) Broth.] = Callicostella pallida (Hornsch.) Ångstr.; Leucobryum fragile Herzog = Leucobryum subobtusifolium (Broth.) B.H. Allen; Macromitrium pinnulatum Herzog = Macromitrium microstomum (Hook. & Grev.) Schwägr.; Schlotheimia vesiculata Herzog [Macromitrium vesiculatum (Herzog) Herzog] = Macromitrium stellulatum (Hornsch.) Brid.; Cyclodictyon breve Herzog = Cyclodictyon albicans (Hedw.) Kuntze; and from Brazil: Callicostella paludicola Broth. = Callicostella merkelii (Hornsch.) A. Jaeger. Three new combinations are proposed: Entosthodon subaloma (Herzog) S.P. Churchill (Goniobryum subaloma Herzog), Syntrichia xerophila (Herzog) S.P. Churchill (Tortula xerophila Herzog), Thamniopsis lepidopiloides (Herzog) S.P. Churchill (Hookeriopsis lepidopiloides Herzog)

    A simple model for the evolution of multi-stranded coronal loops

    Get PDF
    We develop and analyze a simple cellular automaton (CA) model that reproduces the main properties of the evolution of soft X-ray coronal loops. We are motivated by the observation that these loops evolve in three distinguishable phases that suggest the development, maintainance, and decay of a self-organized system. The model is based on the idea that loops are made of elemental strands that are heated by the relaxation of magnetic stress in the form of nanoflares. In this vision, usually called "the Parker conjecture" (Parker 1988), the origin of stress is the displacement of the strand footpoints due to photospheric convective motions. Modeling the response and evolution of the plasma we obtain synthetic light curves that have the same characteristic properties (intensity, fluctuations, and timescales) as the observed cases. We study the dependence of these properties on the model parameters and find scaling laws that can be used as observational predictions of the model. We discuss the implications of our results for the interpretation of recent loop observations in different wavelengths.Comment: 2010, accepted for publication in Ap

    Are constant loop widths an artifact of the background and the spatial resolution?

    Get PDF
    We study the effect of the coronal background in the determination of the diameter of EUV loops, and we analyze the suitability of the procedure followed in a previous paper (L\'opez Fuentes, Klimchuk & D\'emoulin 2006) for characterizing their expansion properties. For the analysis we create different synthetic loops and we place them on real backgrounds from data obtained with the Transition Region and Coronal Explorer (\textit{TRACE}). We apply to these loops the same procedure followed in our previous works, and we compare the results with real loop observations. We demonstrate that the procedure allows us to distinguish constant width loops from loops that expand appreciably with height, as predicted by simple force-free field models. This holds even for loops near the resolution limit. The procedure can easily determine when loops are below resolution limit and therefore not reliably measured. We find that small-scale variations in the measured loop width are likely due to imperfections in the background subtraction. The greatest errors occur in especially narrow loops and in places where the background is especially bright relative to the loop. We stress, however, that these effects do not impact the ability to measure large-scale variations. The result that observed loops do not expand systematically with height is robust.Comment: Accepted for publication in Ap

    Coronal Loop Expansion Properties Explained Using Separators

    Full text link
    One puzzling observed property of coronal loops is that they are of roughly constant thickness along their length. Various studies have found no consistent pattern of width variation along the length of loops observed by TRACE and SOHO. This is at odds with expectations of magnetic flux tube expansion properties, which suggests that loops are widest at their tops, and significantly narrower at their footpoints. Coronal loops correspond to areas of the solar corona which have been preferentially heated by some process, so this observed property might be connected to the mechanisms that heat the corona. One means of energy deposition is magnetic reconnection, which occurs along field lines called separators. These field lines begin and end on magnetic null points, and loops forming near them can therefore be relatively wide at their bases. Thus, coronal energization by magnetic reconnection may replicate the puzzling expansion properties observed in coronal loops. We present results of a Monte Carlo survey of separator field line expansion properties, comparing them to the observed properties of coronal loops.Comment: 16 pages, 9 figures, to be submitted to Ap
    corecore