7,455 research outputs found

    High angular resolution imaging of the circumstellar material around intermediate mass (IM) stars

    Full text link
    In this Paper we present high angular resolution imaging of 3 intermediate-mass (IM) stars using the Plateau de Bure Interferometer (PdBI). In particular we present the chemical study we have carried out towards the IM hot core NGC 7129--FIRS 2. This is the first chemical study in an IM hot core and provides important hints to understand the dependence of the hot core chemistry on the stellar luminosity. We also present our high angular resolution (0.3") images of the borderline Class 0-Class I object IC1396 N. These images trace the warm region of this IM protostar with unprecedent detail (0.3"\sim200 AU at the distance of IC1396 N) and provide the first detection of a cluster of IM hot cores. Finally, we present our interferometric continuum and spectroscopic images of the disk around the Herbig Be star R Mon. We have determined the kinematics and physical structure of the disk associated with this B0 star. The low spectral index derived from the dust emission as well as the flat geometry of the disk suggest a more rapid evolution of the disks associated with massive stars. In the Discussion, we dare to propose a possible evolutionary sequence for the warm circumstellar material around IM stars.Comment: 4 pages, 2 figures. Proceedings of the conference "Science with ALMA: a new era for Astrophysics" hold in Madrid in November, 13-17, 200

    Detection of CO+ in the nucleus of M82

    Full text link
    We present the detection of the reactive ion CO+ towards the prototypical starburst galaxy M82. This is the first secure detection of this short-lived ion in an external galaxy. Values of [CO+]/[HCO+]>0.04 are measured across the inner 650pc of the nuclear disk of M82. Such high values of the [CO+]/[HCO+] ratio had only been previously measured towards the atomic peak in the reflection nebula NGC7023. This detection corroborates that the molecular gas reservoir in the M82 disk is heavily affected by the UV radiation from the recently formed stars. Comparing the column densities measured in M82 with those found in prototypical Galactic photon-dominated regions (PDRs), we need \~20 clouds along the line of sight to explain our observations. We have completed our model of the molecular gas chemistry in the M82 nucleus. Our PDR chemical model successfully explains the [CO+]/[HCO+] ratios measured in the M~82 nucleus but fails by one order of magnitude to explain the large measured CO+ column densities (~1--4x10^{13} cm^{-2}). We explore possible routes to reconcile the chemical model and the observations.Comment: 12 pages, 2 figure

    Molecular line probes of activity in galaxies

    Full text link
    The use of specific tracers of the dense molecular gas phase can help to explore the feedback of activity on the interstellar medium (ISM) in galaxies. This information is a key to any quantitative assessment of the efficiency of the star formation process in galaxies. We present the results of a survey devoted to probe the feedback of activity through the study of the excitation and chemistry of the dense molecular gas in a sample of local universe starbursts and active galactic nuclei (AGNs). Our sample includes also 17 luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs). From the analysis of the LIRGs/ULIRGs subsample, published in Gracia-Carpio et al.(2007) we find the first clear observational evidence that the star formation efficiency of the dense gas, measured by the L_FIR/L_HCN ratio, is significantly higher in LIRGs and ULIRGs than in normal galaxies. Mounting evidence of overabundant HCN in active environments would even reinforce the reported trend, pointing to a significant turn upward in the Kennicutt-Schmidt law around L_FIR=10^11 L_sun. This result has major implications for the use of HCN as a tracer of the dense gas in local and high-redshift luminous infrared galaxies.Comment: 4 pages, 2 figures, contributed paper to Far-Infrared Workshop 07 (FIR 2007

    Detection of CO+ toward the reflection nebula NGC 7023

    Full text link
    We have detected CO+ toward the photon-dominated region (PDR) associated with the reflection nebula NGC 7023. This is the first detection of CO+ in the vicinity of a Be star. A CO+ column density of ~ 3E11 cm-2 has been derived toward the PDR peak. We have, however, not detected CO+ in a well shielded clump of the adjacent molecular cloud, where the CO+/HCO+ abundance ratio is at least 100 times lower than in the PDR. Our results show, for the first time, that CO^+ column densities as large as ~ 3E11 cm-2 can be produced in regions with incident UV fields of just a few 1E3 (in units of Habing field) and densities of ~ 1E5 cm-3. Furthermore, since the ionization potential of CO is larger than 13.6 eV, our data rule out the direct photoionization of CO as a significant CO+ formation mechanism.Comment: 14 pages, 1 Postscript figure, uses aasms4.sty. to appear in Astrophysical Journal Letter

    Herschel observations in the ultracompact HII region Mon R2: Water in dense photon-dominated regions (PDRs)

    Get PDF
    Context. Monoceros R2, at a distance of 830 pc, is the only ultracompact Hii region (UC H_(II)) where the photon-dominated region (PDR) between the ionized gas and the molecular cloud can be resolved with Herschel. Therefore, it is an excellent laboratory to study the chemistry in extreme PDRs (G_0 > 10^5 in units of Habing field, n > 10^6 cm^9−3)). Aims. Our ultimate goal is to probe the physical and chemical conditions in the PDR around the UC H_(II) Mon R2. Methods. HIFI observations of the abundant compounds ^(13)CO, C^(18)O, o-H_2^(18)O, HCO^+, CS, CH, and NH have been used to derive the physical and chemical conditions in the PDR, in particular the water abundance. The modeling of the lines has been done with the Meudon PDR code and the non-local radiative transfer model described by Cernicharo et al. Results. The ^(13)CO, C^(18)O, o-H^(18)_2O, HCO^+ and CS observations are well described assuming that the emission is coming from a dense (n = 5 × 10^6 cm^(−3), N(H_2) > 10^(22) cm^(−2)) layer of molecular gas around the H_(II) region. Based on our o-H^(18)_2O observations, we estimate an o-H_2O abundance of ≈2 × 10^(−8). This is the average ortho-water abundance in the PDR. Additional H^(18)_2O and/or water lines are required to derive the water abundance profile. A lower density envelope (n ~ 10^5 cm^(−3), N(H_2) = 2−5 × 10^(22) cm^(−2)) is responsible for the absorption in the NH 1_1 → 0_2 line. The emission of the CH ground state triplet is coming from both regions with a complex and self-absorbed profile in the main component. The radiative transfer modeling shows that the ^(13)CO and HCO^+ line profiles are consistent with an expansion of the molecular gas with a velocity law, v_e = 0.5 × (r/R_(out))^(−1) km s^(−1), although the expansion velocity is poorly constrained by the observations presented here. Conclusions. We determine an ortho-water abundance of ≈2 × 10^(−8) in Mon R2. Because shocks are unimportant in this region and our estimate is based on H^(18)_2O observations that avoids opacity problems, this is probably the most accurate estimate of the water abundance in PDRs thus far

    First evidence for dusty disks around Herbig Be stars

    Full text link
    We have carried out a high-sensitivity search for circumstellar disks around Herbig Be stars in the continuum at 1.4mm and 2.7mm using the IRAM interferometer at the Plateau de Bure (PdBI) . In this letter, we report data on three well studied B0 stars, MWC 1080, MWC 137 and R Mon. The two latter have also been observed in the continuum at 0.7 cm and 1.3 cm using the NRAO Very Large Array (VLA) . We report the detection of circumstellar disks around MWC 1080 and R Mon with masses of Md ~ 0.003 and 0.01 Msun, respectively, while for MWC 137 we estimate a disk mass upper limit of 0.007 Msun. Our results show that the ratio Md/M* is at least an order of magnitude lower in Herbig Be stars than in Herbig Ae and T Tauri stars.Comment: 5 pages (including figures

    Diffusive Transport Enhanced by Thermal Velocity Fluctuations

    Get PDF
    We study the contribution of advection by thermal velocity fluctuations to the effective diffusion coefficient in a mixture of two indistinguishable fluids. The enhancement of the diffusive transport depends on the system size L and grows as \ln(L/L_0) in quasi two-dimensional systems, while in three dimensions it scales as L_0^{-1}-L^{-1}, where L_0 is a reference length. The predictions of a simple fluctuating hydrodynamics theory are compared to results from particle simulations and a finite-volume solver and excellent agreement is observed. Our results conclusively demonstrate that the nonlinear advective terms need to be retained in the equations of fluctuating hydrodynamics when modeling transport in small-scale finite systems.Comment: To appear in Phys. Rev. Lett., 201

    Structure and electronic properties of molybdenum monoatomic wires encapsulated in carbon nanotubes

    Get PDF
    Monoatomic chains of molybdenum encapsulated in single walled carbon nanotubes of different chiralities are investigated using density functional theory. We determine the optimal size of the carbon nanotube for encapsulating a single atomic wire, as well as the most stable atomic arrangement adopted by the wire. We also study the transport properties in the ballistic regime by computing the transmission coefficients and tracing them back to electronic conduction channels of the wire and the host. We predict that carbon nanotubes of appropriate radii encapsulating a Mo wire have metallic behavior, even if both the nanotube and the wire are insulators. Therefore, encapsulating Mo wires in CNT is a way to create conductive quasi one-dimensional hybrid nanostructures.Comment: 8 pages, 10 figure
    • …
    corecore