23 research outputs found
String Matching and 1d Lattice Gases
We calculate the probability distributions for the number of occurrences
of a given letter word in a random string of letters. Analytical
expressions for the distribution are known for the asymptotic regimes (i) (Gaussian) and such that is finite
(Compound Poisson). However, it is known that these distributions do now work
well in the intermediate regime . We show that the
problem of calculating the string matching probability can be cast into a
determining the configurational partition function of a 1d lattice gas with
interacting particles so that the matching probability becomes the
grand-partition sum of the lattice gas, with the number of particles
corresponding to the number of matches. We perform a virial expansion of the
effective equation of state and obtain the probability distribution. Our result
reproduces the behavior of the distribution in all regimes. We are also able to
show analytically how the limiting distributions arise. Our analysis builds on
the fact that the effective interactions between the particles consist of a
relatively strong core of size , the word length, followed by a weak,
exponentially decaying tail. We find that the asymptotic regimes correspond to
the case where the tail of the interactions can be neglected, while in the
intermediate regime they need to be kept in the analysis. Our results are
readily generalized to the case where the random strings are generated by more
complicated stochastic processes such as a non-uniform letter probability
distribution or Markov chains. We show that in these cases the tails of the
effective interactions can be made even more dominant rendering thus the
asymptotic approximations less accurate in such a regime.Comment: 44 pages and 8 figures. Major revision of previous version. The
lattice gas analogy has been worked out in full, including virial expansion
and equation of state. This constitutes the main part of the paper now.
Connections with existing work is made and references should be up to date
now. To be submitted for publicatio
On the effects of the fix geometric constraint in 2D profiles on the reusability of parametric 3D CAD models
[EN] In order to be reusable, history-based feature-based parametric CAD models must reliably allow for modifications while maintaining their original design intent. In this paper, we demonstrate that relations that fix the location of geometric entities relative to the reference system produce inflexible profiles that reduce model reusability. We present the results of an experiment where novice students and expert CAD users performed a series of modifications in different versions of the same 2D profile, each defined with an increasingly higher number of fix geometric constraints. Results show that the amount of fix constraints in a 2D profile correlates with the time required to complete reusability tasks, i.e., the higher the number of fix constraints in a 2D profile, the less flexible and adaptable the profile becomes to changes. In addition, a pilot software tool to automatically track this type of constraints was developed and tested. Results suggest that the detection of fix constraint overuse may result in a new metric to assess poor quality models with low reusability. The tool provides immediate feedback for preventing high semantic level quality errors, and assistance to CAD users. Finally, suggestions are introduced on how to convert fix constraints in 2D profiles into a negative metric of 3D model quality.The authors would like to thank Raquel Plumed for her support in the statistical analysis. This work has been partially funded by Grant UJI-A02017-15 (Universitat Jaume I) and DPI201784526-R (MINECO/AEI/FEDER, UE), project CAL-MBE. The authors also wish to thank the editor and reviewers for their valuable comments and suggestions that helped us improve the quality of the paper.González-Lluch, C.; Company, P.; Contero, M.; Pérez Lopez, DC.; Camba, JD. (2019). On the effects of the fix geometric constraint in 2D profiles on the reusability of parametric 3D CAD models. International Journal of Technology and Design Education. 29(4):821-841. https://doi.org/10.1007/s10798-018-9458-zS821841294Ait-Aoudia, S., & Foufou, S. (2010). A 2D geometric constraint solver using a graph reduction method. Advances in Engineering Software, 41(10), 1187–1194. https://doi.org/10.1016/j.advengsoft.2010.07.008 .Ault, H. K. (1999). Using geometric constraints to capture design intent. Journal for Geometry and Graphics, 3(1), 39–45.Ault, H. K. (2004). Over-constrained, under-constrained or just right? Goldilocks evaluates DOF of sketched profiles. Paper presented at American Society for Engineering Education, 59th annual midyear meeting past, present and future? Williamsburg, November 21–23.Ault, H. K., Bu, L., & Liu, K. (2014). Solid modeling strategies-analyzing student choices. Paper presented at proceedings of the 121st ASEE annual conference and exposition, Indianapolis, June 15–18.Ault, H. K., & Fraser, A. (2013). A comparison of manual vs. online grading for solid models. Paper presented at 120th ASEE annual conference and exposition, Atlanta, GA, June 23–26, 2013, Paper ID #7233.Barbero, B. R., Pedrosa, C. M., & Samperio, R. Z. (2016). Learning CAD at university through summaries of the rules of design intent. International Journal of Technology and Design Education. https://doi.org/10.1007/s10798-016-9358-z .Bodein, Y., Bertrand, R., & Caillaud, E. (2014). Explicit reference modeling methodology in parametric CAD system. Computers in Industry, 65(1), 136–147. https://doi.org/10.1016/j.compind.2013.08.004 .Bouma, W., Fudos, I., Hoffmann, C., Cai, J., & Paige, R. (1995). Geometric constraint solver. Computer-Aided Design, 27(6), 487–501. https://doi.org/10.1016/0010-4485(94)00013-4 .Briggs, J. C., Hepworth, A. I., Stone, B. R., Cobum, J. Q., Jensen, C. G., & Red, E. (2015). Integrated, synchronous multi-user design and analysis. Journal of Computing and Information Science in Engineering, 15(3), 031002. https://doi.org/10.1115/1.4029801 .Buckley, J., Seery, N., & Canty, D. (2017). Heuristics and CAD modelling: An examination of student behaviour during problem solving episodes within CAD modelling activities. International Journal of Technology and Design Education. https://doi.org/10.1007/s10798-017-9423-2 .Camba, J. D., & Contero, M. (2015). Assessing the impact of geometric design intent annotations on parametric model alteration activities. Computers in Industry, 71, 35–45. https://doi.org/10.1016/j.compind.2015.03.006 .Camba, J. D., Contero, M., & Company, P. (2016). Parametric CAD modeling: An analysis of strategies for design reusability. Computer-Aided Design, 74, 18–31. https://doi.org/10.1016/j.cad.2016.01.003 .Camba, J. D., Contero, M., & Company, P. (2017). CAD reusability and the role of modeling information in the MBE context. Model-based enterprise summit 2017. National Institute of Standards and Technology (NIST), Gaithersburg, MD, April 3–7. MBE17-020. https://www.nist.gov/file/361581 .Cheng, Z., & Ma, Y. (2017). A functional feature modeling method. Advanced Engineering Informatics, 33, 1–15. https://doi.org/10.1016/j.aei.2017.04.003 .Cheng, Z., Xie, Y., & Ma, Y. (2018). Graph centrality analysis of feature dependencies to unveil modeling intents. Computer-Aided Design and Applications. https://doi.org/10.1080/16864360.2018.1441236 .Chester, I. (2007). Teaching for CAD expertise. International Journal of Technology and Design Education, 17, 23–35. https://doi.org/10.1007/s10798-006-9015-z .Company, P., Contero, M., Otey, J., & Plumed, R. (2015). Approach for developing coordinated rubrics to convey quality criteria in CAD training. Computer-Aided Design, 63, 101–117. https://doi.org/10.1016/j.cad.2014.10.00 .Company, P., & González-Lluch, C. (2013). CAD 3D con SolidWorks ® Tomo I: Diseño básico. Publicacions de la Universitat Jaume I. (Colección Sapientia, Núm. 86). http://cad3dconsolidworks.uji.es .Contero, M., Company, P., Vila, C., & Aleixos, N. (2002). Product data quality and collaborative engineering. IEEE Computer Graphics Applications, 22(3), 32–42. https://doi.org/10.1109/MCG.2002.999786 .Dixon, B. M., & Dannenhoffer, J. F., III. (2014). Geometric sketch constraint solving with user feedback. Journal of Aerospace Information Systems, 11(5), 316–325. https://doi.org/10.2514/1.I010110 .Fudos, I., & Hoffmann, C. M. (1997). A graph-constructive approach to solving systems of geometric constraints. ACM Transactions on Graphics, 16(2), 179–216. https://doi.org/10.1145/248210.248223 .Ge, J. X., Chou, S. C., & Gao, X. S. (1999). Geometric constraint satisfaction using optimization methods. Computer-Aided Design, 31(14), 867–879. https://doi.org/10.1016/S0010-4485(99)00074-3 .González-Lluch, C., Company, P., Contero, M., Camba, J. D., & Colom, J. (2017a). A case study on the use of model quality testing tools for the assessment of MCAD models and drawings. International Journal of Engineering Education, 33(5), 1643–1653.González-Lluch, C., Company, P., Contero, M., Camba, J. D., & Plumed, R. (2017b). A survey on 3D CAD model quality assurance and testing tools. Computer-Aided Design, 83, 64–79. https://doi.org/10.1016/j.cad.2016.10.003 .Hamade, R. F. (2009). Profiling the desirable CAD trainee: Technical background, personality attributes, and learning preferences. Journal of Mechanical Design, 131(12), 121009–121019. https://doi.org/10.1115/1.4000455 .Hekman, K. A., & Gordon, M. T. (2013). Automated grading of first year student CAD work. Paper presented at the 120th ASEE annual conference and exposition 2013, Atlanta, GA, June 23–26. Paper ID #6379.Hepworth, A., Tew, K., Trent, M., Ricks, R., Jensen, C. G., & Red, E. R. (2014). Model consistency and conflict resolution with data preservation in multi-user computer aided design. Journal of Computing and Information Science in Engineering, 14(2), 021008. https://doi.org/10.1115/1.4026553 .Jackson, C., & Buxton, M. (2007). The design reuse benchmark report: Seizing the opportunity to shorten product development. Boston: Aberdeen Group.Joan-Arinyo, R., Soto-Riera, A., Vila-Marta, S., & Vilaplana-Pastó, J. (2003). Transforming an under-constrained geometric constraint problem into a well-constrained one. Paper presented at proceedings of ACM SM03, Seatle, June 16–20.Kirstukas, S. J. (2016). Development and evaluation of a computer program to assess student CAD models. Paper presented at ASEE annual conference and exposition, New Orleans, June 26.Kramer, G. (1991). Using degrees of freedom analysis to solve geometric constraint systems. Paper presented at proceedings of the first ACM symposium on solid modeling foundations and CAD/CAM applications 1991, Austin, June 05–07.Kwon, S., Kim, B. C., Mun, D., & Han, S. (2015). Graph-based simplification of feature-based three-dimensional computer-aided design models for preserving connectivity. Journal of Computing and Information Science in Engineering, 15(3), 031010. https://doi.org/10.1115/1.4030748 .Leea, J. Y., & Kimb, K. (1998). A 2-D geometric constraint solver using DOF-based graph reduction. Computer-Aided Design, 30(11), 883–896. https://doi.org/10.1016/S0010-4485(98)00045-1 .Mata Burgarolas, N. (1997). Solving incidence and tangency constraints in 2D. Technical report LSI-97-3R, Departament LiSI, Universitat Politècnica de Catalunya.Petrina, S. (2003). Two cultures of technical courses and discourses: The case of computer aided design. International Journal of Technology and Design Education, 13, 47–73.Race, P. (2001). The lecturers toolkit—A practical guide to learning, teaching and assessment. Great Britain: Glasgow.Red, E., French, D., Jensen, G., Walker, S. S., & Madsen, P. (2013). Emerging design methods and tools in collaborative product development. Journal of Computing and Information Science in Engineering, 13(3), 031001. https://doi.org/10.1115/1.4023917 .Robertson, B. F., Walther, J., & Radcliffe, D. (2007). Creativity and the use of CAD tools: Lessons for engineering design education from industry. Journal of Mechanical Design, 129(7), 753–760. https://doi.org/10.1115/1.2722329 .Stone, B., Salmon, J., Eves, K., Killian, M., Wright, L., Oldroyd, J., et al. (2017). A multi-user computer-aided design competition: Experimental findings and analysis of team-member dynamics. Journal of Computing and Information Science in Engineering, 17(3), 031003. https://doi.org/10.1115/1.4035674 .Summers, J. D., & Shah, J. J. (2010). Mechanical engineering design complexity metrics: Size, coupling, and solvability. Journal of Mechanical Design, 132(2), 21004–21015. https://doi.org/10.1115/1.4000759 .Szewczyk, J. (2003). Difficulties with the novices’ comprehension of the computer-aided design (CAD) interface: Understanding visual representations of CAD tools. Journal of Engineering Design, 14(2), 169–185. https://doi.org/10.1080/0954482031000091491
Editable Representations for 2D Geometric Design
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : vii 1. INTRODUCTION AND RELATED WORK : : : : : : : : : : : : : : : : 1 1.1 Trends in two dimensional sketching : : : : : : : : : : : : : : : : : : : 2 1.1.1 The descriptive approach : : : : : : : : : : : : : : : : : : : : : 2 1.1.2 The constructive approach : : : : : : : : : : : : : : : : : : : : 2 1.1.3 The declarative approach : : : : : : : : : : : : : : : : : : : : : 3 1.2 Constraint solving methods : : : : : : : : : : : : : : : : : : : : : : : 5 1.2.1 Numerical constraint solvers : : : : : : : : : : : : : : : : : : : 5 1.2.2 Constructive constraint solvers : : : : : : : : : : : : : : : : : : 6 1.2.3 Propagation methods : : : : : : : : : : : : : : : : : : : : : : : 7 1.2.4 Symbolic constraint solvers : : : : : : : : : : : : : : : : : : : : 9 1.2.5 Solvers using hybrid methods : : : : : : : : : : : : : : : : : : 9 1.2.6 Other methods : : : : : : : : : : : : : : : : : : : : : : : : : : 10 1.3 The repertoire of con..
A Constraint Programming Approach for Solving Rigid Geometric Systems
This paper introduces a new rigidification method--using interval constraint programming techniques--to solve geometric constraint systems. Standard rigidification techniques are graph-constructive methods exploiting the degrees of freedom of geometric objects. They work in two steps: a planning phase which identifies rigid clusters, and a solving phase which computes the coordinates of the geometric objects in every cluster. We propose here a new heuristic for the planning algorithm that yields in general small systems of equations. We also show that interval constraint techniques can be used not only to efficiently implement the solving phase, but also generalize former ad-hoc solving techniques. First experimental results show that this approach is more efficient than systems based on equational decomposition techniques