76 research outputs found

    Data for NASA's AVSSE 2 experiment: 25 mb sounding data and synoptic charts

    Get PDF
    The AVSSE II experiment is described and tabulated rawinsonde data at 25 mb intervals from the surface to 25 mb for the 23 stations participating in the experiment are presented. Soundings were taken between 1,200 GMT, May 6, and 1,200 GMT, May 7, 1975. The methods of data processing and accuracy are briefly discussed. Synoptic charts prepared from the data are presented, as well as an example of contact data

    Data for NASA's AVE 4 experiment: 25 mb sounding data and synoptic charts

    Get PDF
    The AVE IV Experiment is described and tabulated rawinsonde data at 25 mb intervals from the surface to 25 mb for the 42 stations participating in the experiment are presented. Soundings were taken between 0000 GMT, April 24, and 1,200 GMT, April 25, 1975. The methods of data processing and accuracy are briefly discussed. Synoptic charts prepared from the data are presented, as well as an example of contact data

    The SED Machine: a robotic spectrograph for fast transient classification

    Get PDF
    Current time domain facilities are finding several hundreds of transient astronomical events a year. The discovery rate is expected to increase in the future as soon as new surveys such as the Zwicky Transient Facility (ZTF) and the Large Synoptic Sky Survey (LSST) come on line. At the present time, the rate at which transients are classified is approximately one order or magnitude lower than the discovery rate, leading to an increasing "follow-up drought". Existing telescopes with moderate aperture can help address this deficit when equipped with spectrographs optimized for spectral classification. Here, we provide an overview of the design, operations and first results of the Spectral Energy Distribution Machine (SEDM), operating on the Palomar 60-inch telescope (P60). The instrument is optimized for classification and high observing efficiency. It combines a low-resolution (R\sim100) integral field unit (IFU) spectrograph with "Rainbow Camera" (RC), a multi-band field acquisition camera which also serves as multi-band (ugri) photometer. The SEDM was commissioned during the operation of the intermediate Palomar Transient Factory (iPTF) and has already proved lived up to its promise. The success of the SEDM demonstrates the value of spectrographs optimized to spectral classification. Introduction of similar spectrographs on existing telescopes will help alleviate the follow-up drought and thereby accelerate the rate of discoveries.Comment: 21 pages, 20 figure

    Utilizing active single-mode fiber injection for speckle nulling in exoplanet characterization

    Get PDF
    Despite recent advances in high-contrast imaging techniques, high resolution spectroscopy for characterization of exoplanet atmospheres is still limited by our ability to suppress residual starlight speckles at the planet’s location. We have demonstrated a new concept for speckle nulling by injecting directly imaged planet light into a single-mode fiber, linking a high-contrast adaptively-corrected coronagraph to a high-resolution spectrograph (diffraction-limited or not). The restrictions on the incident electric field that will couple into the single-mode fiber give the adaptive optics system additional degrees of freedom to suppress the speckle noise on top of destructive interference. We are able to achieve a starlight suppression gains that are an order of magnitude better than conventional techniques in broadband light with minimal planet throughput losses

    Practices for Protecting and Enhancing Fish and Wildlife on Coal Mined Land in the Uinta-Southwestern Utah Region

    Get PDF
    This handbook contains information on the best current practices to minimize disturbances and adverse impacts of surface mining on fish and wildlife resources. Current state and federal legislation was reviewed to determine those practices which were most compatible with the best technology currently available, fish and wildlife plans, and reclamation plans for the Uinta-Southwestern region of the U.S. The information presented includes risks, limitations, approximate costs, and maintenance and management requirements of each practice. Plans for the restoration of specific habitats, according to the best current practices, are also included

    Utilizing active single-mode fiber injection for speckle nulling in exoplanet characterization

    Get PDF
    Despite recent advances in high-contrast imaging techniques, high resolution spectroscopy for characterization of exoplanet atmospheres is still limited by our ability to suppress residual starlight speckles at the planet’s location. We have demonstrated a new concept for speckle nulling by injecting directly imaged planet light into a single-mode fiber, linking a high-contrast adaptively-corrected coronagraph to a high-resolution spectrograph (diffraction-limited or not). The restrictions on the incident electric field that will couple into the single-mode fiber give the adaptive optics system additional degrees of freedom to suppress the speckle noise on top of destructive interference. We are able to achieve a starlight suppression gains that are an order of magnitude better than conventional techniques in broadband light with minimal planet throughput losses

    Keck Planet Imager and Characterizer: concept and phased implementation

    Get PDF
    The Keck Planet Imager and Characterizer (KPIC) is a cost-effective upgrade path to the W.M. Keck observatory (WMKO) adaptive optics (AO) system, building on the lessons learned from first and second-generation extreme AO (ExAO) coronagraphs. KPIC will explore new scientific niches in exoplanet science, while maturing critical technologies and systems for future ground-based (TMT, EELT, GMT) and space-based planet imagers (HabEx, LUVOIR). The advent of fast low-noise IR cameras (IR-APD, MKIDS, electron injectors), the rapid maturing of efficient wavefront sensing (WFS) techniques (Pyramid, Zernike), small inner working angle (IWA) coronagraphs (e.g., vortex) and associated low-order wavefront sensors (LOWFS), as well as recent breakthroughs in high contrast high resolution spectroscopy, open new direct exoplanet exploration avenues that are complementary to planet imagers such as VLT-SPHERE and the Gemini Planet Imager (GPI). For instance, the search and detailed characterization of planetary systems on solar-system scales around late-type stars, mostly beyond SPHERE and GPI's reaches, can be initiated now at WMKO
    corecore