628 research outputs found

    Simulation study of Non-ergodicity Transitions: Gelation in Colloidal Systems with Short Range Attractions

    Full text link
    Computer simulations were used to study the gel transition occurring in colloidal systems with short range attractions. A colloid-polymer mixture was modelled and the results were compared with mode coupling theory expectations and with the results for other systems (hard spheres and Lennard Jones). The self-intermediate scattering function and the mean squared displacement were used as the main dynamical quantities. Two different colloid packing fractions have been studied. For the lower packing fraction, α\alpha-scaling holds and the wave-vector analysis of the correlation function shows that gelation is a regular non-ergodicity transition within MCT. The leading mechanism for this novel non-ergodicity transition is identified as bond formation caused by the short range attraction. The time scale and diffusion coefficient also show qualitatively the expected behaviour, although different exponents are found for the power-law divergences of these two quantities. The non-Gaussian parameter was also studied and very large correction to Gaussian behaviour found. The system with higher colloid packing fraction shows indications of a nearby high-order singularity, causing α\alpha-scaling to fail, but the general expectations for non-ergodicity transitions still hold.Comment: 13 pages, 15 figure

    Radio emission and jets from microquasars

    Full text link
    To some extent, all Galactic binary systems hosting a compact object are potential `microquasars', so much as all galactic nuclei may have been quasars, once upon a time. The necessary ingredients for a compact object of stellar mass to qualify as a microquasar seem to be: accretion, rotation and magnetic field. The presence of a black hole may help, but is not strictly required, since neutron star X-ray binaries and dwarf novae can be powerful jet sources as well. The above issues are broadly discussed throughout this Chapter, with a a rather trivial question in mind: why do we care? In other words: are jets a negligible phenomenon in terms of accretion power, or do they contribute significantly to dissipating gravitational potential energy? How do they influence their surroundings? The latter point is especially relevant in a broader context, as there is mounting evidence that outflows powered by super-massive black holes in external galaxies may play a crucial role in regulating the evolution of cosmic structures. Microquasars can also be thought of as a form of quasars for the impatient: what makes them appealing, despite their low number statistics with respect to quasars, are the fast variability time-scales. In the first approximation, the physics of the jet-accretion coupling in the innermost regions should be set by the mass/size of the accretor: stellar mass objects vary on 10^5-10^8 times shorter time-scales, making it possible to study variable accretion modes and related ejection phenomena over average Ph.D. time-scales. [Abridged]Comment: 28 pages, 13 figures, To appear in Belloni, T. (ed.): The Jet Paradigm - From Microquasars to Quasars, Lect. Notes Phys. 794 (2009

    Aspects of the dynamics of colloidal suspensions: Further results of the mode-coupling theory of structural relaxation

    Full text link
    Results of the idealized mode-coupling theory for the structural relaxation in suspensions of hard-sphere colloidal particles are presented and discussed with regard to recent light scattering experiments. The structural relaxation becomes non-diffusive for long times, contrary to the expectation based on the de Gennes narrowing concept. A semi-quantitative connection of the wave vector dependences of the relaxation times and amplitudes of the final α\alpha-relaxation explains the approximate scaling observed by Segr{\`e} and Pusey [Phys. Rev. Lett. {\bf 77}, 771 (1996)]. Asymptotic expansions lead to a qualitative understanding of density dependences in generalized Stokes-Einstein relations. This relation is also generalized to non-zero frequencies thereby yielding support for a reasoning by Mason and Weitz [Phys. Rev. Lett {\bf 74}, 1250 (1995)]. The dynamics transient to the structural relaxation is discussed with models incorporating short-time diffusion and hydrodynamic interactions for short times.Comment: 11 pages, 9 figures; to be published in Phys. Rev.

    Macromolecular theory of solvation and structure in mixtures of colloids and polymers

    Full text link
    The structural and thermodynamic properties of mixtures of colloidal spheres and non-adsorbing polymer chains are studied within a novel general two-component macromolecular liquid state approach applicable for all size asymmetry ratios. The dilute limits, when one of the components is at infinite dilution but the other concentrated, are presented and compared to field theory and models which replace polymer coils with spheres. Whereas the derived analytical results compare well, qualitatively and quantitatively, with mean-field scaling laws where available, important differences from ``effective sphere'' approaches are found for large polymer sizes or semi-dilute concentrations.Comment: 23 pages, 10 figure

    A 15.7-minAM CVn binary discovered in K2

    Get PDF
    We present the discovery of SDSS J135154.46−064309.0, a short-period variable observed using 30-mincadence photometry in K2 Campaign 6. Follow-up spectroscopy and high-speed photometry support a classification as a new member of the rare class of ultracompact accreting binaries known as AM CVn stars. The spectroscopic orbital period of 15.65 ± 0.12 min makes this system the fourth-shortest-period AM CVn known, and the second system of this type to be discovered by the Kepler spacecraft. The K2 data show photometric periods at 15.7306 ± 0.0003 min, 16.1121 ± 0.0004 min, and 664.82 ± 0.06 min, which we identify as the orbital period, superhump period, and disc precession period, respectively. From the superhump and orbital periods we estimate the binary mass ratio q = M2/M1= 0.111 ± 0.005, though this method of mass ratio determination may not be well calibrated for helium-dominated binaries. This system is likely to be a bright foreground source of gravitational waves in the frequency range detectable by Laser Interferometer Space Antenna, and may be of use as a calibration source if future studies are able to constrain the masses of its stellar components

    Limitations of the heavy-baryon expansion as revealed by a pion-mass dispersion relation

    Full text link
    The chiral expansion of nucleon properties such as mass, magnetic moment, and magnetic polarizability are investigated in the framework of chiral perturbation theory, with and without the heavy-baryon expansion. The analysis makes use of a pion-mass dispersion relation, which is shown to hold in both frameworks. The dispersion relation allows an ultraviolet cutoff to be implemented without compromising the symmetries. After renormalization, the leading-order heavy-baryon loops demonstrate a stronger dependence on the cutoff scale, which results in weakened convergence of the expansion. This conclusion is tested against the recent results of lattice quantum chromodynamics simulations for nucleon mass and isovector magnetic moment. In the case of the polarizability, the situation is even more dramatic as the heavy-baryon expansion is unable to reproduce large soft contributions to this quantity. Clearly, the heavy-baryon expansion is not suitable for every quantity.Comment: Accepted for publication in EPJ C. Made changes based on referee comments: clarifying sentences to conclusion 1. of Section IV, beginning of Section V, and new footnote in Section VI, page 8. Added more detailed explanation in paragraph 4 of Section III. Added citations of Phys.Rev. D60, 034014, and Phys.Lett. B716, 33

    Solitary magnetic perturbations at the ELM onset

    Full text link
    Edge localised modes (ELMs) allow maintaining sufficient purity of tokamak H-mode plasmas and thus enable stationary H-mode. On the other hand in a future device ELMs may cause divertor power flux densities far in excess of tolerable material limits. The size of the energy loss per ELM is determined by saturation effects in the non-linear phase of the ELM, which at present is hardly understood. Solitary magnetic perturbations (SMPs) are identified as dominant features in the radial magnetic fluctuations below 100kHz. They are typically observed close (+-0.1ms) to the onset of pedestal erosion. SMPs are field aligned structures rotating in the electron diamagnetic drift direction with perpendicular velocities of about 10km/s. A comparison of perpendicular velocities suggests that the perturbation evoking SMPs is located at or inside the separatrix. Analysis of very pronounced examples showed that the number of peaks per toroidal turn is 1 or 2, which is clearly lower than corresponding numbers in linear stability calculations. In combination with strong peaking of the magnetic signals this results in a solitary appearance resembling modes like palm tree modes, edge snakes or outer modes. This behavior has been quantified as solitariness and correlated to main plasma parameters. SMPs may be considered as a signature of the non-linear ELM-phase originating at the separatrix or further inside. Thus they provide a handle to investigate the transition from linear to non-linear ELM phase. By comparison with data from gas puff imaging processes in the non-linear phase at or inside the separatrix and in the scrape-off-layer (SOL) can be correlated. A connection between the passing of an SMP and the onset of radial filament propagation has been found. Eventually the findings related to SMPs may contribute to a future quantitative understanding of the non-linear ELM evolution.Comment: submitted to Nuclear Fusio

    Core excitation in Coulomb breakup reactions

    Full text link
    Within the pure Coulomb breakup mechanism, we investigate the one-neutron removal reaction of the type A(a,bÎł\gamma)X with 11^{11}Be and 19^{19}C projectiles on a heavy target nucleus 208^{208}Pb at the beam energy of 60 MeV/nucleon. Our intention is to examine the prospective of using these reactions to study the structure of neutron rich nuclei. Integrated partial cross sections and momentum distributions for the ground as well as excited bound states of core nuclei are calculated within the finite range distorted wave Born approximation as well as within the adiabatic model of the Coulomb breakup. Our results are compared with those obtained in the studies of the reactions on a light target where the breakup proceeds via the pure nuclear mechanism. We find that the transitions to excited states of the core are quite weak in the Coulomb dominated process as compared to the pure nuclear breakup.Comment: Revtex format, five postscript figures included, to appear in Phys. Rev.

    Predictive powers of chiral perturbation theory in Compton scattering off protons

    Full text link
    We study low-energy nucleon Compton scattering in the framework of baryon chiral perturbation theory (Bχ\chiPT) with pion, nucleon, and Δ\Delta(1232) degrees of freedom, up to and including the next-to-next-to-leading order (NNLO). We include the effects of order p2p^2, p3p^3 and p4/Δp^4/\varDelta, with Δ≈300\varDelta\approx 300 MeV the Δ\Delta-resonance excitation energy. These are all "predictive" powers in the sense that no unknown low-energy constants enter until at least one order higher (i.e, p4p^4). Estimating the theoretical uncertainty on the basis of natural size for p4p^4 effects, we find that uncertainty of such a NNLO result is comparable to the uncertainty of the present experimental data for low-energy Compton scattering. We find an excellent agreement with the experimental cross section data up to at least the pion-production threshold. Nevertheless, for the proton's magnetic polarizability we obtain a value of (4.0±0.7)×10−4(4.0\pm 0.7)\times 10^{-4} fm3^3, in significant disagreement with the current PDG value. Unlike the previous χ\chiPT studies of Compton scattering, we perform the calculations in a manifestly Lorentz-covariant fashion, refraining from the heavy-baryon (HB) expansion. The difference between the lowest order HBχ\chiPT and Bχ\chiPT results for polarizabilities is found to be appreciable. We discuss the chiral behavior of proton polarizabilities in both HBχ\chiPT and Bχ\chiPT with the hope to confront it with lattice QCD calculations in a near future. In studying some of the polarized observables, we identify the regime where their naive low-energy expansion begins to break down, thus addressing the forthcoming precision measurements at the HIGS facility.Comment: 24 pages, 9 figures, RevTeX4, revised version published in EPJ
    • 

    corecore