11,002 research outputs found

    Minimum-weight springs

    Get PDF
    Load deflection curves for minimum weight spring

    Collisionless Hydrodynamics of Doped Graphene in a Magnetic Field

    Get PDF
    The electrodynamics of a two-dimensional gas of massless fermions in graphene is studied by a collisionless hydrodynamic approach. A low-energy dispersion relation for the collective modes (plasmons) is derived both in the absence and in the presence of a perpendicular magnetic field. The results for graphene are compared to those for a standard two-dimensional gas of massive electrons. We further compare the results within the classical hydrodynamic approach to the full quantum mechanical calculation in the random phase approximation. The low-energy dispersion relation is shown to be a good approximation at small wave vectors. The limitations of this approach at higher order is also discussed.Comment: 7 pages, 1 figur

    Dynamical friction force exerted on spherical bodies

    Get PDF
    We present a rigorous calculation of the dynamical friction force exerted on a spherical massive perturber moving through an infinite homogenous system of field stars. By calculating the shape and mass of the polarization cloud induced by the perturber in the background system, which decelerates the motion of the perturber, we recover Chandrasekhar's drag force law with a modified Coulomb logarithm. As concrete examples we calculate the drag force exerted on a Plummer sphere or a sphere with the density distribution of a Hernquist profile. It is shown that the shape of the perturber affects only the exact form of the Coulomb logarithm. The latter converges on small scales, because encounters of the test and field stars with impact parameters less than the size of the massive perturber become inefficient. We confirm this way earlier results based on the impulse approximation of small angle scatterings.Comment: 5 pages, 2 figures, accepted in MNRA

    Mathematical theory of the Goddard trajectory determination system

    Get PDF
    Basic mathematical formulations depict coordinate and time systems, perturbation models, orbital estimation techniques, observation models, and numerical integration methods
    • …
    corecore