432 research outputs found

    Desmoplakin: an unexpected regulator of microtubule organization in the epidermis

    Get PDF
    Despite their importance in cell shape and polarity generation, the organization of microtubules in differentiated cells and tissues remains relatively unexplored in mammals. We generated transgenic mice in which the epidermis expresses a fluorescently labeled microtubule-binding protein and show that in epidermis and in cultured keratinocytes, microtubules stereotypically reorganize as they differentiate. In basal cells, microtubules form a cytoplasmic network emanating from an apical centrosome. In suprabasal cells, microtubules concentrate at cell–cell junctions. The centrosome retains its ability to nucleate microtubules in differentiated cells, but no longer anchors them. During epidermal differentiation, ninein, which is a centrosomal protein required for microtubule anchoring (Dammermann, A., and A. Merdes. 2002. J. Cell Biol. 159:255–266; Delgehyr, N., J. Sillibourne, and M. Bornens. 2005. J. Cell Sci. 118:1565–1575; Mogensen, M.M., A. Malik, M. Piel, V. Bouckson-Castaing, and M. Bornens. 2000. J. Cell Sci. 113:3013–3023), is lost from the centrosome and is recruited to desmosomes by desmoplakin (DP). Loss of DP prevents accumulation of cortical microtubules in vivo and in vitro. Our work uncovers a differentiation-specific rearrangement of the microtubule cytoskeleton in epidermis, and defines an essential role for DP in the process

    Boundary states for WZW models

    Get PDF
    The boundary states for a certain class of WZW models are determined. The models include all modular invariants that are associated to a symmetry of the unextended Dynkin diagram. Explicit formulae for the boundary state coefficients are given in each case, and a number of properties of the corresponding NIM-reps are derived.Comment: 34 pages, harvmac (b), 4 eps-figures. One reference added; some minor typos, as well as the A2A_2 embedding into D4D_4, are correcte

    Coordinating cytoskeletal tracks to polarize cellular movements

    Get PDF
    For many years after the discovery of actin filaments and microtubules, it was widely assumed that their polymerization, organization, and functions were largely distinct. However, in recent years it has become increasingly apparent that coordinated interactions between microtubules and filamentous actin are involved in many polarized processes, including cell shape, mitotic spindle orientation, motility, growth cone guidance, and wound healing. In the past few years, significant strides have been made in unraveling the intricacies that govern these intertwined cytoskeletal rearrangements

    Comments on nonunitary conformal field theories

    Full text link
    As is well-known, nonunitary RCFTs are distinguished from unitary ones in a number of ways, two of which are that the vacuum 0 doesn't have minimal conformal weight, and that the vacuum column of the modular S matrix isn't positive. However there is another primary field, call it o, which has minimal weight and has positive S column. We find that often there is a precise and useful relationship, which we call the Galois shuffle, between primary o and the vacuum; among other things this can explain why (like the vacuum) its multiplicity in the full RCFT should be 1. As examples we consider the minimal WSU(N) models. We conclude with some comments on fractional level admissible representations of affine algebras. As an immediate consequence of our analysis, we get the classification of an infinite family of nonunitary WSU(3) minimal models in the bulk.Comment: 24 page

    The charges of a twisted brane

    Full text link
    The charges of the twisted D-branes of certain WZW models are determined. The twisted D-branes are labelled by twisted representations of the affine algebra, and their charge is simply the ground state multiplicity of the twisted representation. It is shown that the resulting charge group is isomorphic to the charge group of the untwisted branes, as had been anticipated from a K-theory calculation. Our arguments rely on a number of non-trivial Lie theoretic identities.Comment: 27 pages, 1 figure, harvmac (b

    Charges of Exceptionally Twisted Branes

    Full text link
    The charges of the exceptionally twisted (D4 with triality and E6 with charge conjugation) D-branes of WZW models are determined from the microscopic/CFT point of view. The branes are labeled by twisted representations of the affine algebra, and their charge is determined to be the ground state multiplicity of the twisted representation. It is explicitly shown using Lie theory that the charge groups of these twisted branes are the same as those of the untwisted ones, confirming the macroscopic K-theoretic calculation. A key ingredient in our proof is that, surprisingly, the G2 and F4 Weyl dimensions see the simple currents of A2 and D4, respectively.Comment: 19 pages, 2 figures, LaTex2e, complete proofs of all statements, updated bibliograph

    Finite Group Modular Data

    Get PDF
    In a remarkable variety of contexts appears the modular data associated to finite groups. And yet, compared to the well-understood affine algebra modular data, the general properties of this finite group modular data has been poorly explored. In this paper we undergo such a study. We identify some senses in which the finite group data is similar to, and different from, the affine data. We also consider the data arising from a cohomological twist, and write down, explicitly in terms of quantities associated directly with the finite group, the modular S and T matrices for a general twist, for what appears to be the first time in print.Comment: 38 pp, latex; 5 references added, "questions" section touched-u

    The Rank four Heterotic Modular Invariant Partition Functions

    Full text link
    In this paper, we develop several general techniques to investigate modular invariants of conformal field theories whose algebras of the holomorphic and anti-holomorphic sectors are different. As an application, we find all such ``heterotic'' WZNW physical invariants of (horizontal) rank four: there are exactly seven of these, two of which seem to be new. Previously, only those of rank 3\le 3 have been completely classified. We also find all physical modular invariants for su(2)k1×su(2)k2su(2)_{k_1}\times su(2)_{k_2}, for 22>k1>k222>k_1>k_2, and k1=28k_1=28, k2<22k_2<22, completing the classification of ref.{} \SUSU.Comment: 25 pp., plain te

    Degradation of a quantum directional reference frame as a random walk

    Get PDF
    We investigate if the degradation of a quantum directional reference frame through repeated use can be modeled as a classical direction undergoing a random walk on a sphere. We demonstrate that the behaviour of the fidelity for a degrading quantum directional reference frame, defined as the average probability of correctly determining the orientation of a test system, can be fit precisely using such a model. Physically, the mechanism for the random walk is the uncontrollable back-action on the reference frame due to its use in a measurement of the direction of another system. However, we find that the magnitude of the step size of this random walk is not given by our classical model and must be determined from the full quantum description.Comment: 5 pages, no figures. Comments are welcome. v2: several changes to clarify the key results. v3: journal reference added, acknowledgements and references update

    D-brane charges on non-simply connected groups

    Full text link
    The maximally symmetric D-branes of string theory on the non-simply connected Lie group SU(n)/Z_d are analysed using conformal field theory methods, and their charges are determined. Unlike the well understood case for simply connected groups, the charge equations do not determine the charges uniquely, and the charge group associated to these D-branes is therefore in general not cyclic. The precise structure of the charge group depends on some number theoretic properties of n, d, and the level of the underlying affine algebra k. The examples of SO(3)=SU(2)/Z_2 and SU(3)/Z_3 are worked out in detail, and the charge groups for SU(n)/Z_d at most levels k are determined explicitly.Comment: 31 pages, 1 figure. 2 refs added. Added the observation: the charge group for each su(2) theory equals the centre of corresponding A-D-E grou
    corecore