43 research outputs found

    Anisotropic spin-density distribution and magnetic anisotropy of strained La1−x_{1-x}Srx_xMnO3_3 thin films: Angle-dependent x-ray magnetic circular dichroism

    Get PDF
    Magnetic anisotropies of ferromagnetic thin films are induced by epitaxial strain from the substrate via strain-induced anisotropy in the orbital magnetic moment and that in the spatial distribution of spin-polarized electrons. However, the preferential orbital occupation in ferromagnetic metallic La1−x_{1-x}Srx_xMnO3_3 (LSMO) thin films studied by x-ray linear dichroism (XLD) has always been found out-of-plane for both tensile and compressive epitaxial strain and hence irrespective of the magnetic anisotropy. In order to resolve this mystery, we directly probed the preferential orbital occupation of spin-polarized electrons in LSMO thin films under strain by angle-dependent x-ray magnetic circular dichroism (XMCD). Anisotropy of the spin-density distribution was found to be in-plane for the tensile strain and out-of-plane for the compressive strain, consistent with the observed magnetic anisotropy. The ubiquitous out-of-plane preferential orbital occupation seen by XLD is attributed to the occupation of both spin-up and spin-down out-of-plane orbitals in the surface magnetic dead layer.Comment: 20 pages, 4 figure

    Improvement of acetaldehyde production in Zymomonas mobilis by engineering of Its aerobic metabolism

    Get PDF
    Acetaldehyde is a valuable product of microbial biosynthesis, which can be used by the chemical industry as the entry point for production of various commodity chemicals. In ethanologenic microorganisms, like yeast or the bacterium Zymomonas mobilis, this compound is the immediate metabolic precursor of ethanol. In aerobic cultures of Z. mobilis, it accumulates as a volatile, inhibitory byproduct, due to the withdrawal of reducing equivalents from the alcohol dehydrogenase reaction by respiration. The active respiratory chain of Z. mobilis with its low energy-coupling efficiency is well-suited for regeneration of NAD+ under conditions when acetaldehyde, but not ethanol, is the desired catabolic product. In the present work, we sought to improve the capacity Z. mobilis to synthesize acetaldehyde, based on predictions of a stoichiometric model of its central metabolism developed herein. According to the model analysis, the main objectives in the course of engineering acetaldehyde producer strains were determined to be: (i) reducing ethanol synthesis via reducing the activity of alcohol dehydrogenase (ADH), and (ii) enhancing the respiratory capacity, either by overexpression of the respiratory NADH dehydrogenase (NDH), or by mutation of other components of respiratory metabolism. Several mutants with elevated respiration rate, decreased alcohol dehydrogenase activity, or a combination of both, were obtained. They were extensively characterized by determining their growth rates, product yields, oxygen consumption rates, ADH, and NDH activities, transcription levels of key catabolic genes, as well as concentrations of central metabolites under aerobic culture conditions. Two mutant strains were selected, with acetaldehyde yield close to 70% of the theoretical maximum value, almost twice the previously published yield for Z. mobilis. These strains can serve as a basis for further development of industrial acetaldehyde producers

    Testing the potential of a virtual reality neurorehabilitation system during performance of observation, imagery and imitation of motor actions recorded by wireless functional near-infrared spectroscopy (fNIRS)

    Get PDF
    Background Several neurorehabilitation strategies have been introduced over the last decade based on the so-called simulation hypothesis. This hypothesis states that a neural network located in primary and secondary motor areas is activated not only during overt motor execution, but also during observation or imagery of the same motor action. Based on this hypothesis, we investigated the combination of a virtual reality (VR) based neurorehabilitation system together with a wireless functional near infrared spectroscopy (fNIRS) instrument. This combination is particularly appealing from a rehabilitation perspective as it may allow minimally constrained monitoring during neurorehabilitative training. Methods fNIRS was applied over F3 of healthy subjects during task performance in a virtual reality (VR) environment: 1) 'unilateral' group (N = 15), contralateral recording during observation, motor imagery, observation & motor imagery, and imitation of a grasping task performed by a virtual limb (first-person perspective view) using the right hand; 2) 'bilateral' group (N = 8), bilateral recording during observation and imitation of the same task using the right and left hand alternately. Results In the unilateral group, significant within-condition oxy-hemoglobin concentration Δ[O2Hb] changes (mean ± SD ÎŒmol/l) were found for motor imagery (0.0868 ± 0.5201 ÎŒmol/l) and imitation (0.1715 ± 0.4567 ÎŒmol/l). In addition, the bilateral group showed a significant within-condition Δ[O2Hb] change for observation (0.0924 ± 0.3369 ÎŒmol/l) as well as between-conditions with lower Δ[O2Hb] amplitudes during observation compared to imitation, especially in the ipsilateral hemisphere (p < 0.001). Further, in the bilateral group, imitation using the non-dominant (left) hand resulted in larger Δ[O2Hb] changes in both the ipsi- and contralateral hemispheres as compared to using the dominant (right) hand. Conclusions This study shows that our combined VR-fNIRS based neurorehabilitation system can activate the action-observation system as described by the simulation hypothesis during performance of observation, motor imagery and imitation of hand actions elicited by a VR environment. Further, in accordance with previous studies, the findings of this study revealed that both inter-subject variability and handedness need to be taken into account when recording in untrained subjects. These findings are of relevance for demonstrating the potential of the VR-fNIRS instrument in neurofeedback applications

    Variations of the stick principle

    No full text

    A cryomechanics technique to measure dissipated energies of 10 nJ

    No full text

    On potential embedding and versions of Martin's axiom

    No full text
    SIGLECopy held by FIZ Karlsruhe; available from UB/TIB Hannover / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman

    Transient Heat Transfer Characteristics of Liquid Helium in Centrifugal Acceleration Field

    No full text

    On L_#infinity#_K-free Boolean algebras

    No full text
    SIGLECopy held by FIZ Karlsruhe; available from UB/TIB Hannover / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman
    corecore