1,006 research outputs found

    The Spectral Zeta Function for Laplace Operators on Warped Product Manifolds of the type I×fNI\times_{f} N

    Full text link
    In this work we study the spectral zeta function associated with the Laplace operator acting on scalar functions defined on a warped product of manifolds of the type I×fNI\times_{f} N where II is an interval of the real line and NN is a compact, dd-dimensional Riemannian manifold either with or without boundary. Starting from an integral representation of the spectral zeta function, we find its analytic continuation by exploiting the WKB asymptotic expansion of the eigenfunctions of the Laplace operator on MM for which a detailed analysis is presented. We apply the obtained results to the explicit computation of the zeta regularized functional determinant and the coefficients of the heat kernel asymptotic expansion.Comment: 29 pages, LaTe

    Heat Kernel Coefficients for Laplace Operators on the Spherical Suspension

    Full text link
    In this paper we compute the coefficients of the heat kernel asymptotic expansion for Laplace operators acting on scalar functions defined on the so called spherical suspension (or Riemann cap) subjected to Dirichlet boundary conditions. By utilizing a contour integral representation of the spectral zeta function for the Laplacian on the spherical suspension we find its analytic continuation in the complex plane and its associated meromorphic structure. Thanks to the well known relation between the zeta function and the heat kernel obtainable via Mellin transform we compute the coefficients of the asymptotic expansion in arbitrary dimensions. The particular case of a dd-dimensional sphere as the base manifold is studied as well and the first few heat kernel coefficients are given explicitly.Comment: 26 Pages, 1 Figur

    Scalar Casimir effect between two concentric D-dimensional spheres

    Full text link
    The Casimir energy for a massless scalar field between the closely spaced two concentric D-dimensional (for D>3) spheres is calculated by using the mode summation with contour integration in the complex plane of eigenfrequencies and the generalized Abel-Plana formula for evenly spaced eigenfrequency at large argument. The sign of the Casimir energy between closely spaced two concentric D-dimensional spheres for a massless scalar field satisfying the Dirichlet boundary conditions is strictly negative. The Casimir energy between D-1 dimensional surfaces close to each other is regarded as interesting both by itself and as the key to describing of stability of the attractive Casimir force. PACS number(s): 03.70.+k, 11.10.Kk, 11.10.Gh, 03.65.GeComment: 14 pages. arXiv admin note: substantial text overlap with arXiv:1207.418

    Noncommutative Einstein Equations

    Full text link
    We study a noncommutative deformation of general relativity where the gravitational field is described by a matrix-valued symmetric two-tensor field. The equations of motion are derived in the framework of this new theory by varying a diffeomorphisms and gauge invariant action constructed by using a matrix-valued scalar curvature. Interestingly the genuine noncommutative part of the dynamical equations is described only in terms of a particular tensor density that vanishes identically in the commutative limit. A noncommutative generalization of the energy-momentum tensor for the matter field is studied as well.Comment: 17 Pages, LaTeX, reference adde

    An external replication on the effects of test-driven development using a multi-site blind analysis approach

    Get PDF
    Context: Test-driven development (TDD) is an agile practice claimed to improve the quality of a software product, as well as the productivity of its developers. A previous study (i.e., baseline experiment) at the University of Oulu (Finland) compared TDD to a test-last development (TLD) approach through a randomized controlled trial. The results failed to support the claims. Goal: We want to validate the original study results by replicating it at the University of Basilicata (Italy), using a different design. Method: We replicated the baseline experiment, using a crossover design, with 21 graduate students. We kept the settings and context as close as possible to the baseline experiment. In order to limit researchers bias, we involved two other sites (UPM, Spain, and Brunel, UK) to conduct blind analysis of the data. Results: The Kruskal-Wallis tests did not show any significant difference between TDD and TLD in terms of testing effort (p-value = .27), external code quality (p-value = .82), and developers' productivity (p-value = .83). Nevertheless, our data revealed a difference based on the order in which TDD and TLD were applied, though no carry over effect. Conclusions: We verify the baseline study results, yet our results raises concerns regarding the selection of experimental objects, particularly with respect to their interaction with the order in which of treatments are applied. We recommend future studies to survey the tasks used in experiments evaluating TDD. Finally, to lower the cost of replication studies and reduce researchers' bias, we encourage other research groups to adopt similar multi-site blind analysis approach described in this paper.This research is supported in part by the Academy of Finland Project 278354

    A Non-Singular One-Loop Wave Function of the Universe From a New Eigenvalue Asymptotics in Quantum Gravity

    Full text link
    Recent work on Euclidean quantum gravity on the four-ball has proved regularity at the origin of the generalized zeta-function built from eigenvalues for metric and ghost modes, when diffeomorphism-invariant boundary conditions are imposed in the de Donder gauge. The hardest part of the analysis involves one of the four sectors for scalar-type perturbations, the eigenvalues of which are obtained by squaring up roots of a linear combination of Bessel functions of integer adjacent orders, with a coefficient of linear combination depending on the unknown roots. This paper obtains, first, approximate analytic formulae for such roots for all values of the order of Bessel functions. For this purpose, both the descending series for Bessel functions and their uniform asymptotic expansion at large order are used. The resulting generalized zeta-function is also built, and another check of regularity at the origin is obtained. For the first time in the literature on quantum gravity on manifolds with boundary, a vanishing one-loop wave function of the Universe is found in the limit of small three-geometry, which suggests a quantum avoidance of the cosmological singularity driven by full diffeomorphism invariance of the boundary-value problem for one-loop quantum theory.Comment: 21 Pages, Latex and .eps files with JHEP3 style. The discussion in Section 5 has been improved, and Ref. 26 has been adde

    Results of the fifth international spectroradiometer comparison for improved solar spectral irradiance measurements and related impact on reference solar cell calibration

    No full text
    This paper reports on the results of the fifth spectral irradiance measurement intercomparison and the impact these results have on the spread of spectral mismatch calculations in the outdoor characterization of reference solar cell and photovoltaic (PV) devices. Ten laboratories and commercial partners with their own instruments were involved in the comparison. Solar spectral irradiance in clear sky condition was measured with both fast fixed and slow rotating grating spectroradiometers. This paper describes the intercomparison campaign, describes different statistical analysis used on acquired data, reports on the results, and analyzes the impact these results would have on the primary calibration of a c-Si PV reference cell under natural sunlight

    Spectral asymptotics of Euclidean quantum gravity with diff-invariant boundary conditions

    Full text link
    A general method is known to exist for studying Abelian and non-Abelian gauge theories, as well as Euclidean quantum gravity, at one-loop level on manifolds with boundary. In the latter case, boundary conditions on metric perturbations h can be chosen to be completely invariant under infinitesimal diffeomorphisms, to preserve the invariance group of the theory and BRST symmetry. In the de Donder gauge, however, the resulting boundary-value problem for the Laplace type operator acting on h is known to be self-adjoint but not strongly elliptic. The latter is a technical condition ensuring that a unique smooth solution of the boundary-value problem exists, which implies, in turn, that the global heat-kernel asymptotics yielding one-loop divergences and one-loop effective action actually exists. The present paper shows that, on the Euclidean four-ball, only the scalar part of perturbative modes for quantum gravity are affected by the lack of strong ellipticity. Further evidence for lack of strong ellipticity, from an analytic point of view, is therefore obtained. Interestingly, three sectors of the scalar-perturbation problem remain elliptic, while lack of strong ellipticity is confined to the remaining fourth sector. The integral representation of the resulting zeta-function asymptotics is also obtained; this remains regular at the origin by virtue of a spectral identity here obtained for the first time.Comment: 25 pages, Revtex-4. Misprints in Eqs. (5.11), (5.14), (5.16) have been correcte

    Recent NA48/2 and NA62 results

    Full text link
    The NA48/2 Collaboration at CERN has accumulated and analysed unprecedented statistics of rare kaon decays in the Ke4K_{e4} modes: Ke4(+)K_{e4}(+-) (K±π+πe±νK^\pm \to \pi^+ \pi^- e^\pm \nu) and Ke4(00)K_{e4}(00) (K±π0π0e±νK^\pm \to \pi^0 \pi^0 e^\pm \nu) with nearly one percent background contamination. It leads to the improved measurement of branching fractions and detailed form factor studies. New final results from the analysis of 381 K±π±γγK^\pm \to \pi^\pm \gamma \gamma rare decay candidates collected by the NA48/2 and NA62 experiments at CERN are presented. The results include a decay rate measurement and fits to Chiral Perturbation Theory (ChPT) description.Comment: Prepared for the Proceedings of "Moriond QCD and High Energy Interactions. March 22-29 2014." conferenc
    corecore