76 research outputs found
Genetic mapping of novel modifiers for ApcMin induced intestinal polyps’ development using the genetic architecture power of the collaborative cross mice
Abstract Background Familial adenomatous polyposis is an inherited genetic disease, characterized by colorectal polyps. It is caused by inactivating mutations in the Adenomatous polyposis coli (Apc) gene. Mice carrying a nonsense mutation in the Apc gene at R850, which is designated Apc Min/+ (Multiple intestinal neoplasia), develop intestinal adenomas. Several genetic modifier loci of Min (Mom) were previously mapped, but so far, most of the underlying genes have not been identified. To identify novel modifier loci associated with Apc Min/+ , we performed quantitative trait loci (QTL) analysis for polyp development using 49 F1 crosses between different Collaborative Cross (CC) lines and C57BL/6 J-Apc Min/+ mice. The CC population is a genetic reference panel of recombinant inbred lines, each line independently descended from eight genetically diverse founder strains. C57BL/6 J-Apc Min/+ males were mated with females from 49 CC lines. F1 offspring were terminated at 23 weeks and polyp counts from three sub-regions (SB1–3) of small intestinal and colon were recorded. Results The number of polyps in all these sub-regions and colon varied significantly between the different CC lines. At 95% genome-wide significance, we mapped nine novel QTL for variation in polyp number, with distinct QTL associated with each intestinal sub-region. QTL confidence intervals varied in width between 2.63–17.79 Mb. We extracted all genes in the mapped QTL at 90 and 95% CI levels using the BioInfoMiner online platform to extract, significantly enriched pathways and key linker genes, that act as regulatory and orchestrators of the phenotypic landscape associated with the Apc Min/+ mutation. Conclusions Genomic structure of the CC lines has allowed us to identify novel modifiers and confirmed some of the previously mapped modifiers. Key genes involved mainly in metabolic and immunological processes were identified. Future steps in this analysis will be to identify regulatory elements – and possible epistatic effects – located in the mapped QTL
Mapping genetic determinants of host susceptibility to Pseudomonas aeruginosa lung infection in mice.
Background: P. aeruginosa is one of the top three causes of opportunistic human bacterial infections. The remarkable
variability in the clinical outcomes of this infection is thought to be associated with genetic predisposition. However,
the genes underlying host susceptibility to P. aeruginosa infection are still largely unknown.
Results: As a step towards mapping these genes, we applied a genome wide linkage analysis approach to a mouse
model. A large F2 intercross population, obtained by mating P. aeruginosa-resistant C3H/HeOuJ, and susceptible A/J
mice, was used for quantitative trait locus (QTL) mapping. The F2 progenies were challenged with a P. aeruginosa
clinical strain and monitored for the survival time up to 7 days post-infection, as a disease phenotype associated trait.
Selected phenotypic extremes of the F2 distribution were genotyped with high-density single nucleotide polymorphic
(SNP) markers, and subsequently QTL analysis was performed. A significant locus was mapped on chromosome 6 and
was named P. aeruginosa infection resistance locus 1 (Pairl1). The most promising candidate genes, including Dok1,
Tacr1, Cd207, Clec4f, Gp9, Gata2, Foxp1, are related to pathogen sensing, neutrophils and macrophages recruitment and
inflammatory processes.
Conclusions: We propose a set of genes involved in the pathogenesis of P. aeruginosa infection that may be explored
to complement human studie
Anterior Open Bite Malocclusion: From Clinical Treatment Strategies towards the Dissection of the Genetic Bases of the Disease Using Human and Collaborative Cross Mice Cohorts
Anterior open bite malocclusion is a complex dental condition characterized by a lack of contact or overlap between the upper and lower front teeth. It can lead to difficulties with speech, chewing, and biting. Its etiology is multifactorial, involving a combination of genetic, environmental, and developmental factors. Genetic studies have identified specific genes and signaling pathways involved in jaw growth, tooth eruption, and dental occlusion that may contribute to open bite development. Understanding the genetic and epigenetic factors contributing to skeletal open bite is crucial for developing effective prevention and treatment strategies. A thorough manual search was undertaken along with searches on PubMed, Scopus, Science Direct, and Web of Science for relevant studies published before June 2022. RCTs (clinical trials) and subsequent observational studies comprised the included studies. Orthodontic treatment is the primary approach for managing open bites, often involving braces, clear aligners, or other orthodontic appliances. In addition to orthodontic interventions, adjuvant therapies such as speech therapy and/or physiotherapy may be necessary. In some cases, surgical interventions may be necessary to correct underlying skeletal issues. Advancements in technology, such as 3D printing and computer-assisted design and manufacturing, have improved treatment precision and efficiency. Genetic research using animal models, such as the Collaborative Cross mouse population, offers insights into the genetic components of open bite and potential therapeutic targets. Identifying the underlying genetic factors and understanding their mechanisms can lead to the development of more precise treatments and preventive strategies for open bite. Here, we propose to perform human research using mouse models to generate debatable results. We anticipate that a genome-wide association study (GWAS) search for significant genes and their modifiers, an epigenetics-wide association study (EWAS), RNA-seq analysis, the integration of GWAS and expression-quantitative trait loci (eQTL), and micro-, small-, and long noncoding RNA analysis in tissues associated with open bite in humans and mice will uncover novel genes and genetic factors influencing this phenotype
Dissecting the effect of genetic variation on the hepatic expression of drug disposition genes across the collaborative cross mouse strains
A central challenge in pharmaceutical research is to investigate genetic variation in response to drugs. The Collaborative Cross (CC) mouse reference population is a promising model for pharmacogenomic studies because of its large amount of genetic variation, genetic reproducibility, and dense recombination sites. While the CC lines are phenotypically diverse, their genetic diversity in drug disposition processes, such as detoxification reactions, is still largely uncharacterized. Here we systematically measured RNA-sequencing expression profiles from livers of 29 CC lines under baseline conditions. We then leveraged a reference collection of metabolic biotransformation pathways to map potential relations between drugs and their underlying expression quantitative trait loci (eQTLs). By applying this approach on proximal eQTLs, including eQTLs acting on the overall expression of genes and on the expression of particular transcript isoforms, we were able to construct the organization of hepatic eQTL-drug connectivity across the CC population. The analysis revealed a substantial impact of genetic variation acting on drug biotransformation, allowed mapping of potential joint genetic effects in the context of individual drugs, and demonstrated crosstalk between drug metabolism and lipid metabolism. Our findings provide a resource for investigating drug disposition in the CC strains, and offer a new paradigm for integrating biotransformation reactions to corresponding variations in DNA sequences
Intestinal Microbiota And Diet in IBS: Causes, Consequences, or Epiphenomena?
Irritable bowel syndrome (IBS) is a heterogeneous functional disorder with a multifactorial etiology that involves the interplay of both host and environmental factors. Among environmental factors relevant for IBS etiology, the diet stands out given that the majority of IBS patients report their symptoms to be triggered by meals or specifi c foods. The diet provides substrates for microbial fermentation, and, as the composition of the intestinal microbiota is disturbed in IBS patients, the link between diet, microbiota composition, and microbial fermentation products might have an essential role in IBS etiology. In this review, we summarize current evidence regarding the impact of diet and the intestinal microbiota on IBS symptoms, as well as the reported interactions between diet and the microbiota composition. On the basis of the existing data, we suggest pathways (mechanisms) by which diet components, via the microbial fermentation, could trigger IBS symptoms. Finally, this review provides recommendations for future studies that would enable elucidation of the role of diet and microbiota and how these factors may be (inter) related in the pathophysiology of IBS
Erratum to: Status and access to the Collaborative Cross population (Mammalian Genome (2012) 23, (706-712) DOI: 10.1007/s00335-012-9410-6)
The Collaborative Cross (CC) is a panel of recombinant inbred lines derived from eight genetically diverse laboratory inbred strains. Recently, the genetic architecture of the CC population was reported based on the genotype of a single male per line, and other publications reported incompletely inbred CC mice that have been used to map a variety of traits. The three breeding sites, in the US, Israel, and Australia, are actively collaborating to accelerate the inbreeding process through marker-assisted inbreeding and to expedite community access of CC lines deemed to have reached defined thresholds of inbreeding. Plans are now being developed to provide access to this novel genetic reference population through distribution centers. Here we provide a description of the distribution efforts by the University of North Carolina Systems Genetics Core, Tel Aviv University, Israel and the University of Western Australia
Translation of mouse model to human gives insights into periodontitis etiology
To suggest candidate genes involved in periodontitis, we combined gene expression data of periodontal biopsies from Collaborative Cross (CC) mouse lines, with previous reported quantitative trait loci (QTL) in mouse and with human genome-wide association studies (GWAS) associated with periodontitis. Periodontal samples from two susceptible, two resistant and two lines that showed bone formation after periodontal infection were collected during infection and naïve status. Differential expressed genes (DEGs) were analyzed in a case-control and case-only design. After infection, eleven protein-coding genes were significantly stronger expressed in resistant CC lines compared to susceptible ones. Of these, the most upregulated genes were MMP20 (P = 0.001), RSPO4 (P = 0.032), CALB1 (P = 1.06×10-4), and AMTN (P = 0.05). In addition, human orthologous of candidate genes were tested for their association in a case-controls samples of aggressive (AgP) and chronic (CP) periodontitis (5,095 cases, 9,908 controls). In this analysis, variants at two loci, TTLL11/PTGS1 (rs9695213, P = 5.77×10-5) and RNASE2 (rs2771342, P = 2.84×10-5) suggested association with both AgP and CP. In the association analysis with AgP only, the most significant associations were located at the HLA loci HLA-DQH1 (rs9271850, P = 2.52×10-14) and HLA-DPA1 (rs17214512, P = 5.14×10-5). This study demonstrates the utility of the CC RIL populations as a suitable model to investigate the mechanism of periodontal disease
Modeling the quantitative nature of neurodevelopmental disorders using Collaborative Cross mice
Background Animal models for neurodevelopmental disorders (NDD) generally rely on a single genetic mutation on a fixed genetic background. Recent human genetic studies however indicate that a clinical diagnosis with ASDAutism Spectrum Disorder (ASD) is almost always associated with multiple genetic fore- and background changes. The translational value of animal model studies would be greatly enhanced if genetic insults could be studied in a more quantitative framework across genetic backgrounds. Methods We used the Collaborative Cross (CC), a novel mouse genetic reference population, to investigate the quantitative genetic architecture of mouse behavioral phenotypes commonly used in animal models for NDD. Results Classical tests of social recognition and grooming phenotypes appeared insufficient for quantitative studies due to genetic dilution and limited heritability. In contrast, digging, locomotor activity, and stereotyped exploratory patterns were characterized by continuous distribution across our CC sample and also mapped to quantitative trait loci containing genes associated with corresponding phenotypes in human populations. Conclusions These findings show that the CC can move animal model studies beyond comparative single gene-single background designs, and point out which type of behavioral phenotypes are most suitable to quantify the effect of developmental etiologies across multiple genetic backgrounds
A Comprehensive Genetic Analysis of Candidate Genes Regulating Response to Trypanosoma congolense Infection in Mice
About one-third of cattle in sub-Saharan Africa are at risk of contracting “Nagana”—a disease caused by Trypanosoma parasites similar to those that cause human “Sleeping Sickness.” Laboratory mice can also be infected by trypanosomes, and different mouse breeds show varying levels of susceptibility to infection, similar to what is seen between different breeds of cattle. Survival time after infection is controlled by the underlying genetics of the mouse breed, and previous studies have localised three genomic regions that regulate this trait. These three “Quantitative Trait Loci” (QTL), which have been called Tir1, Tir2 and Tir3 (for Trypanosoma Infection Response 1–3) are well defined, but nevertheless still contain over one thousand genes, any number of which may be influencing survival. This study has aimed to identify the specific differences associated with genes that are controlling mouse survival after T. congolense infection. We have applied a series of analyses to existing datasets, and combined them with novel sequencing, and other genetic data to create short lists of genes that share polymorphisms across susceptible mouse breeds, including two promising “candidate genes”: Pram1 at Tir1 and Cd244 at Tir3. These genes can now be tested to confirm their effect on response to trypanosome infection
Mechanisms controlling anaemia in Trypanosoma congolense infected mice.
Trypanosoma congolense are extracellular protozoan parasites of the blood stream of artiodactyls and are one of the main constraints on cattle production in Africa. In cattle, anaemia is the key feature of disease and persists after parasitaemia has declined to low or undetectable levels, but treatment to clear the parasites usually resolves the anaemia. The progress of anaemia after Trypanosoma congolense infection was followed in three mouse strains. Anaemia developed rapidly in all three strains until the peak of the first wave of parasitaemia. This was followed by a second phase, characterized by slower progress to severe anaemia in C57BL/6, by slow recovery in surviving A/J and a rapid recovery in BALB/c. There was no association between parasitaemia and severity of anaemia. Furthermore, functional T lymphocytes are not required for the induction of anaemia, since suppression of T cell activity with Cyclosporin A had neither an effect on the course of infection nor on anaemia. Expression of genes involved in erythropoiesis and iron metabolism was followed in spleen, liver and kidney tissues in the three strains of mice using microarrays. There was no evidence for a response to erythropoietin, consistent with anaemia of chronic disease, which is erythropoietin insensitive. However, the expression of transcription factors and genes involved in erythropoiesis and haemolysis did correlate with the expression of the inflammatory cytokines Il6 and Ifng. The innate immune response appears to be the major contributor to the inflammation associated with anaemia since suppression of T cells with CsA had no observable effect. Several transcription factors regulating haematopoiesis, Tal1, Gata1, Zfpm1 and Klf1 were expressed at consistently lower levels in C57BL/6 mice suggesting that these mice have a lower haematopoietic capacity and therefore less ability to recover from haemolysis induced anaemia after infection
- …