3,526 research outputs found

    GW170817/GRB 170817A/AT2017gfo association: some implications for physics and astrophysics

    Full text link
    On 17 August 2017, a gravitational wave event (GW170817) and an associated short gamma-ray burst (GRB 170817A) from a binary neutron star merger had been detected. The followup optical/infrared observations also identified the macronova/kilonova emission (AT2017gfo). In this work we discuss some implications of the remarkable GW170817/GRB 170817A/AT2017gfo association. We show that the 1.7\sim 1.7s time delay between the gravitational wave (GW) and GRB signals imposes very tight constraint on the superluminal movement of gravitational waves (i.e., the relative departure of GW velocity from the speed of light is 4.3×1016\leq 4.3\times 10^{-16}) or the possible violation of weak equivalence principle (i.e., the difference of the gamma-ray and GW trajectories in the gravitational field of the galaxy and the local universe should be within a factor of 3.4×109\sim 3.4\times 10^{-9}). The so-called Dark Matter Emulators and a class of contender models for cosmic acceleration ("Covariant Galileon") are ruled out, too. The successful identification of Lanthanide elements in the macronova/kilonova spectrum also excludes the possibility that the progenitors of GRB 170817A are a binary strange star system. The high neutron star merger rate (inferred from both the local sGRB data and the gravitational wave data) together with the significant ejected mass strongly suggest that such mergers are the prime sites of heavy r-process nucleosynthesis.Comment: 8 pages, 3 figures, Accepted for Publication in ApJ

    High remission and low relapse with prolonged intensive DMARD therapy in rheumatoid arthritis (PRINT): A multicenter randomized clinical trial

    Get PDF
    Objectives: To determine whether prolonged intensive disease-modifying antirheumatic drug (DMARD) treatment (PRINT) leads to high remission and low relapse rates in patients with severe rheumatoid arthritis (RA). Methods: In this multicenter, randomized and parallel treatment trial, 346 patients with active RA (disease activity score (28 joints) [DAS28] (erythrocyte sedimentation rate [ESR]) > 5.1) were enrolled from 9 centers. In phase 1, patients received intensive treatment with methotrexate, leflunomide, and hydroxychloroquine, up to 36 weeks, until remission (DAS28 ≤ 2.6) or a low disease activity (2.6 < DAS28 ≤ 3.2) was achieved. In phase 2, patients achieving remission or low disease activity were followed up with randomization to 1 of 2 step-down protocols: leflunomide plus hydroxychloroquine combination or leflunomide monotherapy. The primary endpoints were good European League Against Rheumatism (EULAR) response (DAS28 (ESR) < 3.2 and a decrease of DAS28 by at least 1.2) during the intensive treatment and the disease state retention rate during step-down maintenance treatment. Predictors of a good EULAR response in the intensive treatment period and disease flare in the maintenance period were sought. Results: A good EULAR response was achieved in 18.7%, 36.9%, and 54.1% of patients at 12, 24, and 36 weeks, respectively. By 36 weeks, 75.4% of patients achieved good and moderate EULAR responses. Compared with those achieving low disease activity and a high health assessment questionnaire (HAQ > 0.5), patients achieving remission (DAS28 ≤ 2.6) and low HAQ (≤ 0.5) had a significantly higher retention rate when tapering the DMARDs treatment (P = 0.046 and P = 0.01, respectively). There was no advantage on tapering to combination rather than monotherapy. Conclusions: Remission was achieved in a proportion of patients with RA receiving prolonged intensive DMARD therapy. Low disease activity at the start of disease taper leads to less subsequent flares. Leflunomide is a good maintenance treatment as single treatment

    A String-Inspired Quintom Model Of Dark Energy

    Get PDF
    We propose in this paper a quintom model of dark energy with a single scalar field ϕ\phi given by the lagrangian L=V(ϕ)1αμϕμϕ+βϕϕ{\cal L}=-V(\phi)\sqrt{1-\alpha^\prime\nabla_{\mu}\phi\nabla^{\mu}\phi +\beta^\prime \phi\Box\phi}. In the limit of β\beta^\prime\to0 our model reduces to the effective low energy lagrangian of tachyon considered in the literature. We study the cosmological evolution of this model, and show explicitly the behaviors of the equation of state crossing the cosmological constant boundary.Comment: 6 pages, 4 figures, accepted by PL

    Smaller Genetic Risk in Catabolic Process Explains Lower Energy Expenditure, More Athletic Capability and Higher Prevalence of Obesity in Africans

    Get PDF
    Lower energy expenditure (EE) for physical activity was observed in Africans than in Europeans, which might contribute to the higher prevalence of obesity and more athletic capability in Africans. But it is still unclear why EE is lower among African populations. In this study we tried to explore the genetic mechanism underlying lower EE in Africans. We screened 231 common variants with possibly harmful impact on 182 genes in the catabolic process. The genetic risk, including the total number of mutations and the sum of harmful probabilities, was calculated and analyzed for the screened variants at a population level. Results of the genetic risk among human groups showed that most Africans (3 out of 4 groups) had a significantly smaller genetic risk in the catabolic process than Europeans and Asians, which might result in higher efficiency of generating energy among Africans. In sport competitions, athletes need massive amounts of energy expenditure in a short period of time, so higher efficiency of energy generation might help make African-descendent athletes more powerful. On the other hand, higher efficiency of generating energy might also result in consuming smaller volumes of body mass. As a result, Africans might be more vulnerable to obesity compared to the other races when under the same or similar conditions. Therefore, the smaller genetic risk in the catabolic process might be at the core of understanding lower EE, more athletic capability and higher prevalence of obesity in Africans

    A simulation study on the measurement of D0-D0bar mixing parameter y at BES-III

    Full text link
    We established a method on measuring the \dzdzb mixing parameter yy for BESIII experiment at the BEPCII e+ee^+e^- collider. In this method, the doubly tagged ψ(3770)D0D0\psi(3770) \to D^0 \overline{D^0} events, with one DD decays to CP-eigenstates and the other DD decays semileptonically, are used to reconstruct the signals. Since this analysis requires good e/πe/\pi separation, a likelihood approach, which combines the dE/dxdE/dx, time of flight and the electromagnetic shower detectors information, is used for particle identification. We estimate the sensitivity of the measurement of yy to be 0.007 based on a 20fb120fb^{-1} fully simulated MC sample.Comment: 6 pages, 7 figure

    A Close Look at Spatial Modeling: From Attention to Convolution

    Full text link
    Vision Transformers have shown great promise recently for many vision tasks due to the insightful architecture design and attention mechanism. By revisiting the self-attention responses in Transformers, we empirically observe two interesting issues. First, Vision Transformers present a queryirrelevant behavior at deep layers, where the attention maps exhibit nearly consistent contexts in global scope, regardless of the query patch position (also head-irrelevant). Second, the attention maps are intrinsically sparse, few tokens dominate the attention weights; introducing the knowledge from ConvNets would largely smooth the attention and enhance the performance. Motivated by above observations, we generalize self-attention formulation to abstract a queryirrelevant global context directly and further integrate the global context into convolutions. The resulting model, a Fully Convolutional Vision Transformer (i.e., FCViT), purely consists of convolutional layers and firmly inherits the merits of both attention mechanism and convolutions, including dynamic property, weight sharing, and short- and long-range feature modeling, etc. Experimental results demonstrate the effectiveness of FCViT. With less than 14M parameters, our FCViT-S12 outperforms related work ResT-Lite by 3.7% top1 accuracy on ImageNet-1K. When scaling FCViT to larger models, we still perform better than previous state-of-the-art ConvNeXt with even fewer parameters. FCViT-based models also demonstrate promising transferability to downstream tasks, like object detection, instance segmentation, and semantic segmentation. Codes and models are made available at: https://github.com/ma-xu/FCViT

    Cross-inhibition of NMBR and GRPR signaling maintains normal histaminergic itch transmission

    Get PDF
    We previously showed that gastrin-releasing peptide receptor (GRPR) in the spinal cord is important for mediating nonhistaminergic itch. Neuromedin B receptor (NMBR), the second member of the mammalian bombesin receptor family, is expressed in a largely nonoverlapping pattern with GRPR in the superficial spinal cord, and its role in itch transmission remains unclear. Here, we report that Nmbr knock-out (KO) mice exhibited normal scratching behavior in response to intradermal injection of pruritogens. However, mice lacking both Nmbr and Grpr (DKO mice) showed significant deficits in histaminergic itch. In contrast, the chloroquine (CQ)-evoked scratching behavior of DKO mice is not further reduced compared with Grpr KO mice. These results suggest that NMBR and GRPR could compensate for the loss of each other to maintain normal histamine-evoked itch, whereas GRPR is exclusively required for CQ-evoked scratching behavior. Interestingly, GRPR activity is enhanced in Nmbr KO mice despite the lack of upregulation of Grpr expression; so is NMBR in Grpr KO mice. We found that NMB acts exclusively through NMBR for itch transmission, whereas GRP can signal through both receptors, albeit to NMBR to a much lesser extent. Although NMBR and NMBR(+) neurons are dispensable for histaminergic itch, GRPR(+) neurons are likely to act downstream of NMBR(+) neurons to integrate NMB-NMBR-encoded histaminergic itch information in normal physiological conditions. Together, we define the respective function of NMBR and GRPR in itch transmission, and reveal an unexpected relationship not only between the two receptors but also between the two populations of interneurons in itch signaling
    corecore