1,123 research outputs found

    Is the level of serum lactate dehydrogenase a potential biomarker for glucose monitoring with type 2 diabetes mellitus?

    Get PDF
    IntroductionType 2 diabetes mellitus (T2DM) is a metabolic disorder due to defects in insulin secretion or insulin resistance leading to the dysfunction and damage of various organs. To improve the clinical evaluation of short-term blood glycemic variability monitoring, it is critical to identify another blood cell status and nutritional status biomarker that is less susceptible to interference. This study identifies the significance of serum lactate dehydrogenase (LDH) level among T2DM patients treated in outpatient clinics and investigates the relationship of LDH level with other variables.MethodsThis study comprised 72 outpatients with T2DM over 20 years of age. Blood samples were collected followed by a hematological analysis of serum glycated albumin (GA), LDH, fasting blood glucose, glycosylated hemoglobin, C-peptide, and insulin antibodies (insulin Ab).ResultsSerum LDH level was significantly correlated with GA (p < 0.001), C-peptide (p = 0.04), insulin Ab (p = 0.03), and thyroid-stimulating hormone (TSH) levels (p = 0.04). Hence, we performed a linear regression analysis of hematological markers. GA (p < 0.001, r2 = 0.45) and insulin Ab (p < 0.001, r2 = 0.40) were significantly associated with LDH level. Then, we classified patients into low (<200 U/L) and high (β‰₯200 U/L) serum LDH level groups, respectively. GA (p < 0.001), C-peptide (p = 0.001), and TSH (p = 0.03) showed significant differences in patients with high LDH levels compared with those in patients with low LDH levels.ConclusionIn conclusion, we suggested that LDH level was independent of long-term but associated with short-term blood glucose monitoring. The results indicated that changes in serum GA induced cell damage and the abnormal elevation of the serum level of LDH may occur simultaneously with glycemic variability. It has been reported that many biomarkers are being used to observe glucose variability in T2DM. However, LDH could provide a more convenient and faster evaluation of glycemic variability in T2DM

    Development of Interstitial Lung Disease Among Patients With Atrial Fibrillation Receiving Oral Anticoagulants in Taiwan.

    Get PDF
    ImportanceThere are emerging concerns from case reports and pharmacovigilance analyses of a possible risk of interstitial lung disease (ILD) associated with the use of factor Xa (FXa) inhibitors.ObjectiveTo evaluate the risk of incident ILD associated with the use of oral anticoagulants (OACs) in patients with nonvalvular atrial fibrillation (NVAF).Design, setting, and participantsThis nationwide retrospective cohort study used data from the Taiwan National Health Insurance Research Database. Patients with NVAF without preexisting lung disease who received OACs from June 1, 2012, to December 31, 2017, were included. Propensity score stabilized weighting (PSSW) was used to balance covariates across the medication groups (FXa inhibitors, dabigatran, and warfarin, with warfarin as the reference). Patients were followed up from the drug index date until the onset of ILD, death, or end of the study (December 31, 2019), whichever occurred first. Data were analyzed from September 11, 2021, to August 3, 2022.ExposuresPatients with NVAF were treated with FXa inhibitors, dabigatran, or warfarin.Main outcomes and measuresNew-onset idiopathic ILD.ResultsAmong the 106β€―044 patients (mean [SD] age, 73.4 [11.9] years; 59 995 men [56.6%]) included in the study, 64β€―555 (60.9%) received FXa inhibitors (apixban [n = 15β€―386], edoxaban [n = 12β€―413], and rivaroxaban [n = 36β€―756]), 22β€―501 (21.2%) received dabigatran, and 18β€―988 (17.9%) received warfarin at baseline. The FXa inhibitors were associated with a higher risk of incident ILD (0.29 vs 0.17 per 100 patient-years; hazard ratio, 1.54 [95% CI, 1.22-1.94]; P Conclusions and relevanceResults of this study suggest that FXa inhibitors were associated with lung injury among patients with NVAF who were treated with OACs. Physicians should be vigilant in monitoring for any potential adverse lung outcomes associated with the use of these drugs

    The risk of incident atrial fibrillation in patients with type 2 diabetes treated with sodium glucose cotransporter-2 inhibitors, glucagon-like peptide-1 receptor agonists, and dipeptidyl peptidase-4 inhibitors: a nationwide cohort study.

    Get PDF
    BackgroundAlthough a few meta-analyses were conducted to compare the risk of incident atrial fibrillation (AF) between sodium-glucose cotransporter-2 inhibitor (SGLT2i), glucagon-like peptide-1 receptor agonists (GLP-1RA), and other anti-hyperglycemic agents using indirect or direct comparison, the above analyses showed conflicting results with each other. We aimed to evaluate the risk of new-onset AF associated with the use of SGLT2i, GLP-1RA, and dipeptidyl peptidase-4 inhibitor (DPP4i) among a large longitudinal cohort of diabetic patients.MethodsIn this nationwide retrospective cohort study based on the Taiwan National Health Insurance Research Database, a total of 344,893, 44,370, and 393,100 consecutive patients with type 2 diabetes without preexisting AF receiving GLP-1RA, SGLT2i, and DPP4i, respectively, were enrolled from May 1, 2016, to December 31, 2019. We used 1:1 propensity score matching (PSM) to balance covariates across paired study groups. Patients were followed from the drug index date until the occurrence of AF, death, discontinuation of the index drug, or the end of the study period (December 31, 2020), whichever occurred first.ResultsAfter PSM, there were 245,442, 43,682, and 39,190 paired cohorts of SGLT2i-DPP4i, SGLT2i-GLP-1RA, and GLP-1RA-DPP4i, respectively. SGLT2i treatment was associated with lower risk of new-onset AF in participants with type 2 diabetes compared with either DPP4i [hazard ratio (HR):0.90; 95% confidential interval (CI) 0.84-0.96; P = 0.0028] or GLP-1RA [HR 0.74; 95% CI 0.63-0.88; P = 0.0007] treatment after PSM. There was no difference in the risk of incident AF between GLP-1RA and DPP4i users [HR 1.01; 95% CI 0.86-1.19; P = 0.8980]. The above findings persisted among several important subgroups. Dapagliflozin was specifically associated with a lower risk of new-onset AF compared with DPP4i (P interaction = 0.02).ConclusionsCompared with DPP4i, SGLT2i but not GLP-1RA was associated with a lower risk of incident AF in patients with type 2 diabetes

    Ptenb Mediates Gastrulation Cell Movements via Cdc42/AKT1 in Zebrafish

    Get PDF
    Phosphatidylinositol 3-kinase (PI3 kinase) mediates gastrulation cell migration in zebrafish via its regulation of PIP2/PIP3 balance. Although PI3 kinase counter enzyme PTEN has also been reported to be essential for gastrulation, its role in zebrafish gastrulation has been controversial due to the lack of gastrulation defects in pten-null mutants. To clarify this issue, we knocked down a pten isoform, ptenb by using anti-sense morpholino oligos (MOs) in zebrafish embryos and found that ptenb MOs inhibit convergent extension by affecting cell motility and protrusion during gastrulation. The ptenb MO-induced convergence defect could be rescued by a PI3-kinase inhibitor, LY294002 and by overexpressing dominant negative Cdc42. Overexpression of human constitutively active akt1 showed similar convergent extension defects in zebrafish embryos. We also observed a clear enhancement of actin polymerization in ptenb morphants under cofocal microscopy and in actin polymerization assay. These results suggest that Ptenb by antagonizing PI3 kinase and its downstream Akt1 and Cdc42 to regulate actin polymerization that is critical for proper cell motility and migration control during gastrulation in zebrafish

    SV2 Mediates Entry of Tetanus Neurotoxin into Central Neurons

    Get PDF
    Tetanus neurotoxin causes the disease tetanus, which is characterized by rigid paralysis. The toxin acts by inhibiting the release of neurotransmitters from inhibitory neurons in the spinal cord that innervate motor neurons and is unique among the clostridial neurotoxins due to its ability to shuttle from the periphery to the central nervous system. Tetanus neurotoxin is thought to interact with a high affinity receptor complex that is composed of lipid and protein components; however, the identity of the protein receptor remains elusive. In the current study, we demonstrate that toxin binding, to dissociated hippocampal and spinal cord neurons, is greatly enhanced by driving synaptic vesicle exocytosis. Moreover, tetanus neurotoxin entry and subsequent cleavage of synaptobrevin II, the substrate for this toxin, was also dependent on synaptic vesicle recycling. Next, we identified the potential synaptic vesicle binding protein for the toxin and found that it corresponded to SV2; tetanus neurotoxin was unable to cleave synaptobrevin II in SV2 knockout neurons. Toxin entry into knockout neurons was rescued by infecting with viruses that express SV2A or SV2B. Tetanus toxin elicited the hyper excitability in dissociated spinal cord neurons - due to preferential loss of inhibitory transmission - that is characteristic of the disease. Surprisingly, in dissociated cortical cultures, low concentrations of the toxin preferentially acted on excitatory neurons. Further examination of the distribution of SV2A and SV2B in both spinal cord and cortical neurons revealed that SV2B is to a large extent localized to excitatory terminals, while SV2A is localized to inhibitory terminals. Therefore, the distinct effects of tetanus toxin on cortical and spinal cord neurons are not due to differential expression of SV2 isoforms. In summary, the findings reported here indicate that SV2A and SV2B mediate binding and entry of tetanus neurotoxin into central neurons

    The C-Terminus of Histone H2B Is Involved in Chromatin Compaction Specifically at Telomeres, Independently of Its Monoubiquitylation at Lysine 123

    Get PDF
    Telomeric heterochromatin assembly in budding yeast propagates through the association of Silent Information Regulator (SIR) proteins with nucleosomes, and the nucleosome array has been assumed to fold into a compacted structure. It is believed that the level of compaction and gene repression within heterochromatic regions can be modulated by histone modifications, such as acetylation of H3 lysine 56 and H4 lysine 16, and monoubiquitylation of H2B lysine 123. However, it remains unclear as to whether or not gene silencing is a direct consequence of the compaction of chromatin. Here, by investigating the role of the carboxy-terminus of histone H2B in heterochromatin formation, we identify that the disorderly compaction of chromatin induced by a mutation at H2B T122 specifically hinders telomeric heterochromatin formation. H2B T122 is positioned within the highly conserved AVTKY motif of the Ξ±C helix of H2B. Heterochromatin containing the T122E substitution in H2B remains inaccessible to ectopic dam methylase with dramatically increased mobility in sucrose gradients, indicating a compacted chromatin structure. Genetic studies indicate that this unique phenotype is independent of H2B K123 ubiquitylation and Sir4. In addition, using ChIP analysis, we demonstrate that telomere structure in the mutant is further disrupted by a defect in Sir2/Sir3 binding and the resulting invasion of euchromatic histone marks. Thus, we have revealed that the compaction of chromatin per se is not sufficient for heterochromatin formation. Instead, these results suggest that an appropriately arrayed chromatin mediated by H2B C-terminus is required for SIR binding and the subsequent formation of telomeric chromatin in yeast, thereby identifying an intrinsic property of the nucleosome that is required for the establishment of telomeric heterochromatin. This requirement is also likely to exist in higher eukaryotes, as the AVTKY motif of H2B is evolutionarily conserved
    • …
    corecore