13 research outputs found

    Optimum design and research on novel vehicle hybrid excitation synchronous generator

    Full text link
    Hybrid excitation is an organic combination of permanent magnet excitation and electric excitation. Hybrid excitation synchronous generator (HESG) both has the advantages of light quality, less losses and high efficiency like permanent magnet generator and the advantages of good magnetic field adjusting performance like electric excitation generator, so it is very suitable for the vehicle application. This paper presented a novel vehicle HESG which has skew stator core, permanent magnet rotor and both armature winding and field winding in the stator. Using ANSYS software, simulating the electric excitation field and the magnetic field, and finally the main parameters of HESG were designed. The simulation and the test results both show that the novel vehicle PMSG has the advantages of small cogging torque, high efficiency, small harmonic component output voltage and low waveform aberration, so as to meet the design requirements fully

    Effect of angiotensin receptor-neprilysin inhibitor on atrial electrical instability in atrial fibrillation

    Get PDF
    Background and objectiveAround 33.5 million patients suffered from atrial fibrillation (AF), causing complications and increasing mortality and disability rate. Upstream treatment for AF is getting more popular in clinical practice in recent years. The angiotensin receptor-neprilysin inhibitor (ARNI) is one of the potential treatment options. Our study aimed to investigate the effect of ARNI on atrial electrical instability and structural remodeling in AF.MethodsOur research consisted of two parts – a retrospective real-world clinical study and an animal experiment on calmness to verify the retrospective founding. In the retrospective study, we reviewed all patients (n = 110) who had undergone the first AF ablation from 1 August 2018 to 1 March 2022. Patients with ARNI (n = 36) or angiotensin II receptor antagonist (ARB) (n = 35) treatment were enrolled. Their clinical data, ultrasound cardiogram (UCG) and Holter parameters were collected before radiofrequency catheter ablation (RFCA) as baseline and at 24-week follow-up. Univariate and multivariate logistic regression analysis were performed. In the animal experiment, we established an AF model (n = 18) on canines by rapid atrial pacing. After the successful procedure of pacing, all the 15 alive beagles were equally and randomly assigned to three groups (n = 5 each): Control group, ARB group, and ARNI group. UCG was performed before the pacing as baseline. Physiological biopsy, UCG, and electrophysiological study (EPS) were performed at 8-week.ResultsClinical data showed that the atrial arrhythmia rate at 24-week was significantly lower in ARNI group compared to ARB group (P < 0.01), and ARNI was independently associated with a lower atrial arrhythmia rate (P < 0.05) at 24-week in multivariate regression logistic analysis. In the animal experiment, ARNI group had a higher atrial electrical stability score and a shorter AF duration in the EPS compared to Control and ARB group (P < 0.05). In the left atrium voltage mapping, ARNI group showed less low voltage and disordered zone compared to Control and ARB group. Compared to Control group, right atrium diameter (RAD), left ventricle end-diastolic volume index (LVEDVI), E/A, and E/E′ were lower in ARNI group (P < 0.05) at the 8-weeks follow-up, while left atrium ejection fraction (LAEF) and left ventricle ejection fraction (LVEF) were higher (P < 0.01). Compared to ARB group, LVEF was higher in ARNI group at the 8-week follow-up (P < 0.05). ARB and ARNI group had a lower ratio of fibrotic lesions in the left atrium tissues compared to Control group (P < 0.01), but no difference was found between the ARB and the ARNI group.ConclusionARNI could reduce atrial electrical instability in AF in comparison with ARB in both retrospective study and animal experiment

    Carboniferous–Permian transgression/regression mechanisms in the Eastern Ordos Basin and their sea-level spatiotemporal variability: Insights from source-to-sink systems

    No full text
    International audienceDeveloped on the North China Craton, the intracratonic Ordos Basin contains a complete Paleozoic-to-Cenozoic sediment record, allowing for long-term paleoenvironmental and climate change investigation. During the Carboniferous–Permian period, convergence between the North China block and the paleo-Yangtze plate to the south resulted in a general marine regression characterized by a series of second-order transgression/regression cycles diachronous along the eastern margin of the Ordos. However, the detailed mechanisms that induced these cycles, as well as the associated paleoecological changes, remain unknown. In this study, we integrate multiple indices, including δ18O and δ13C, rare earth element (REE), paleontological assemblages, and clay content (w (chlorite + kaolinite)/w((Illite) ratio) planar distribution, to restore the paleo-water depth distribution. These parameters are then used to reconstruct the paleo-sea level from the Pennsylvanian to the middle Permian. We conclude that the direction of second-order transgression/regression was mainly toward the east during the Pennsylvanian–early Permian and switched clockwise toward the north during the middle Permian. We suggest that the second-order cycles, diachronous in space and time, are mainly linked to local variations in sediment supply and regional uplift. Using detrital zircon U–Pb data and the REE and trace element content and heavy mineral assemblages (HMA), we estimate the sediment provenance area. The sediment volumes deposited in the basin through time are obtained using 2D seismic data. During the Carboniferous, the coarse-grained sediments deposited in the eastern Ordos were derived from the uplifting Helan Mountain (Qiandam–Qilian orogenic belt). By the middle Permian, the detrital material became multi-sourced, thus issuing the Yinshan range to the north and the Qinling range to the south. We then integrate the description of numerous core samples with electric log and 2D seismic data to reconstruct the sediment facies associations across the first-order regression from the Carboniferous tidal flat depositional system to the middle Permian prograding fluvial delta system. According to the transfer of the glacial epoch, the sedimentation rate, and the transgression/regression rate above, we classify the evolution process into three patterns: low-transgression rate and less-sediment supply pattern (the late Carboniferous), high regression rate and mass sediment supply pattern (the north block during the early Permian), and low regression rate and mass sediment supply pattern (the south block during the Sakmarian stage). Lastly, with the quantitative calculation of the source-to-sink (S2S) parameters, including the S2S system volume and the elevated height of regional uplift with the 2D seismic data, we propose the mechanism of transgression/regression in the Ordos Basin, responding to the above three pattern s. The first pattern was controlled by regional uplift, whereas the second pattern was controlled by sediment supply. As to the third one, uplift and sediment supply could affect the transgression/regression process

    Analytical Calculation of the Magnetic Field Distribution in a Linear and Rotary Machine with an Orthogonally Arrayed Permanent Magnet

    No full text
    In this paper, an analytical model is proposed to analyze and predict the characteristics of a double stator linear and rotary permanent magnet machine (DSLRPMM). In order to simplify the magnetic field calculation, the DSLRPMM is cut along the axial direction (z direction) and transferred into a planar one. Hence, an analytical model of the machine considered the orthogonal effect (OE) is proposed based on the combined solution of Maxwell’s equation, conformal mapping, and equivalent magnetic circuit model (EMCM). The magnetic field distributions of the DSLRPMM are calculated with and without considering the OE, and some important electromagnetic parameters, including the back electromotive force (EMF), detent force, cogging torque, and output torque and thrust, are also predicted and compared to the 3D finite element analysis (FEA). The results show that the errors between the proposed analytical model and the 3D FEA results are less than 0.2% and even less than 0.1% for certain parameters, that is, the results obtained from the proposed analytical model agree well with that of the FEA. Moreover, the analyzed and predicted results are also verified by the experimental results on the prototype of the DSLRPMM

    Multistage unidirectionally migrating canyons and the evolution of their trajectories in the canyon zone in the Baiyun Sag, northern South China Sea: Insights into canyon genesis

    No full text
    International audienceIn deep-sea slope areas, canyons provide an ideal space to preserve sediments and provide a window to explore the deepwater deposition process, such as turbidity flow and contourite currents. We have evaluated results of the study of the northern continental slope of the South China Sea characterized by the presence of mostly straight canyons. After evaluating core samples and interpreting the corresponding seismic data, we static the sedimentary parameter and identified two types of canyons with different migrating trajectories: "convex downward curve-shaped" trajectories and "convex upward curve-shaped" trajectories. The convex downward curve-shaped canyon trajectory is distinguished by a lower layer of coarse-grained sediment and an upper layer of fine-grained sediment, whereas the convex upward curve-shaped canyon trajectory features a lower layer of fine-grained sediment and an upper layer of coarse-grained sediment. Combining the grain size of the core sample and the scale of the sedimentary structure, we restore the turbidity flow rates and the corresponding turbidity flow behaviors. Coarse-grained turbidity flows are characterized by lower vertical erosion rates and higher lateral abrasion rates, whereas fine-grained turbidity flows exhibit the opposite characteristics. Thus, the convex downward curve-shaped migration trajectory is mainly formed by coarse-grained turbidity flow erosion in the first stage (the late migration stage) and fine-grained turbidity flow deposition in the second stage (the vertical aggradation stage). In contrast, the convex upward curve-shaped trajectory forms through the opposite pattern of sedimentary evolution

    Numerical Analysis and Design Optimization of a Homopolar Inductor Machine Used for Flywheel Energy Storage

    No full text

    Hybrid-Excited Series Permanent Magnet Axial Field Flux Switching Memory Machine

    No full text

    MiR-146b-5p enriched bioinspired exosomes derived from fucoidan-directed induction mesenchymal stem cells protect chondrocytes in osteoarthritis by targeting TRAF6

    No full text
    Abstract Osteoarthritis (OA) is a common degenerative joint disease characterized by progressive cartilage degradation and inflammation. In recent years, mesenchymal stem cells (MSCs) derived exosomes (MSCs-Exo) have attracted widespread attention for their potential role in modulating OA pathology. However, the unpredictable therapeutic effects of exosomes have been a significant barrier to their extensive clinical application. In this study, we investigated whether fucoidan-pretreated MSC-derived exosomes (F-MSCs-Exo) could better protect chondrocytes in osteoarthritic joints and elucidate its underlying mechanisms. In order to evaluate the role of F-MSCs-Exo in osteoarthritis, both in vitro and in vivo studies were conducted. MiRNA sequencing was employed to analyze MSCs-Exo and F-MSCs-Exo, enabling the identification of differentially expressed genes and the exploration of the underlying mechanisms behind the protective effects of F-MSCs-Exo in osteoarthritis. Compared to MSCs-Exo, F-MSCs-Exo demonstrated superior effectiveness in inhibiting inflammatory responses and extracellular matrix degradation in rat chondrocytes. Moreover, F-MSCs-Exo exhibited enhanced activation of autophagy in chondrocytes. MiRNA sequencing of both MSCs-Exo and F-MSCs-Exo revealed that miR-146b-5p emerged as a promising candidate mediator for the chondroprotective function of F-MSCs-Exo, with TRAF6 identified as its downstream target. In conclusion, our research results demonstrate that miR-146b-5p encapsulated in F-MSCs-Exo effectively inhibits TRAF6 activation, thereby suppressing inflammatory responses and extracellular matrix degradation, while promoting chondrocyte autophagy for the protection of osteoarthritic cartilage cells. Consequently, the development of a therapeutic approach combining fucoidan with MSC-derived exosomes provides a promising strategy for the clinical treatment of osteoarthritis

    Data_Sheet_1_Effect of angiotensin receptor-neprilysin inhibitor on atrial electrical instability in atrial fibrillation.docx

    No full text
    Background and objectiveAround 33.5 million patients suffered from atrial fibrillation (AF), causing complications and increasing mortality and disability rate. Upstream treatment for AF is getting more popular in clinical practice in recent years. The angiotensin receptor-neprilysin inhibitor (ARNI) is one of the potential treatment options. Our study aimed to investigate the effect of ARNI on atrial electrical instability and structural remodeling in AF.MethodsOur research consisted of two parts – a retrospective real-world clinical study and an animal experiment on calmness to verify the retrospective founding. In the retrospective study, we reviewed all patients (n = 110) who had undergone the first AF ablation from 1 August 2018 to 1 March 2022. Patients with ARNI (n = 36) or angiotensin II receptor antagonist (ARB) (n = 35) treatment were enrolled. Their clinical data, ultrasound cardiogram (UCG) and Holter parameters were collected before radiofrequency catheter ablation (RFCA) as baseline and at 24-week follow-up. Univariate and multivariate logistic regression analysis were performed. In the animal experiment, we established an AF model (n = 18) on canines by rapid atrial pacing. After the successful procedure of pacing, all the 15 alive beagles were equally and randomly assigned to three groups (n = 5 each): Control group, ARB group, and ARNI group. UCG was performed before the pacing as baseline. Physiological biopsy, UCG, and electrophysiological study (EPS) were performed at 8-week.ResultsClinical data showed that the atrial arrhythmia rate at 24-week was significantly lower in ARNI group compared to ARB group (P ConclusionARNI could reduce atrial electrical instability in AF in comparison with ARB in both retrospective study and animal experiment.</p
    corecore