35,705 research outputs found
Gaps below strange star crusts
The gap caused by a strong electric field between the quark surface and
nuclear crust of a strange star is studied in an improved model including
gravity and pressure as well as electrostatic forces. The transition from gap
to crust is followed in detail. The properties of the gap are investigated for
a wide range of parameters assuming both color-flavor locked and non
color-flavor locked strange star cores. The maximally allowed crust density is
generally lower than that of neutron drip. Finite temperature is shown to
increase the gap width, but the effect is significant only at extreme
temperatures. Analytical approximations are derived and shown to provide useful
fits to the numerical results.Comment: 12 pages incl. 14 figures. To appear in Physical Review
3-hydroxykynurenine suppresses CD4+ T-cell proliferation, induces T-regulatory-cell development, and prolongs corneal allograft survival
Copyright © 2011 Association for Research in Vision and Ophthalmology. This article is available open access through the publisher’s website at the link below.Purpose. IDO (indoleamine 2,3-dioxygenase) modulates the immune response by depletion of the essential amino acid tryptophan, and IDO overexpression has been shown to prolong corneal allograft survival. This study was conducted to examine the effect of kynurenines, the products of tryptophan breakdown and known to act directly on T lymphocytes, on corneal graft survival.
Methods. The effects of kynurenines on T-cell proliferation and death, T-regulatory-cell development, and dendritic cell function, phenotype, and viability were analyzed in vitro. The effect of topical and systemic administration of 3-hydroxykynurenine (3HK) on orthotopic murine corneal allograft survival was examined.
Results. T-lymphocyte proliferation was inhibited by two of the four different kynurenines: 3HK and 3-hydroxyanthranilic acid (3HAA). This effect was accompanied by significant T-cell death. Neither 3HK nor 3HAA altered dendritic cell function, nor did they induce apoptosis or pathogenicity to corneal endothelial cells. Administration of systemic and topical 3HK to mice receiving a fully mismatched corneal graft resulted in significant prolongation of graft survival (median survival of control grafts, 12 days; of treated, 19 and 15 days, respectively; P < 0.0003). While systemic administration of 3HK was associated with a significant depletion of CD4+ T, CD8+ T, and B lymphocytes in peripheral blood, no depletion was found after topical administration.
Conclusions. The production of kynurenines, in particular 3HK and 3HAA, may be one mechanism (in addition to tryptophan depletion) by which IDO prolongs graft survival. These molecules have potential as specific agents for preventing allograft rejection in patients at high rejection risk.Fight for Sight and the Wellcome Trust
Similarity transformations approach for a generalized Fokker-Planck equation
By using similarity transformations approach, the exact propagator for a
generalized one-dimensional Fokker-Planck equation, with linear drift force and
space-time dependent diffusion coefficient, is obtained. The method is simple
and enables us to recover and generalize special cases studied through the Lie
algebraic approach and the Green function technique.Comment: 8 pages, no figure
Assembly of hard spheres in a cylinder: a computational and experimental study
Hard spheres are an important benchmark of our understanding of natural and
synthetic systems. In this work, colloidal experiments and Monte Carlo
simulations examine the equilibrium and out-of-equilibrium assembly of hard
spheres of diameter within cylinders of diameter . Although in such a system phase transitions formally do not exist,
marked structural crossovers are observed. In simulations, we find that the
resulting pressure-diameter structural diagram echoes the densest packing
sequence obtained at infinite pressure in this range of . We also observe
that the out-of-equilibrium self-assembly depends on the compression rate. Slow
compression approximates equilibrium results, while fast compression can skip
intermediate structures. Crossovers for which no continuous line-slip exists
are found to be dynamically unfavorable, which is the source of this
difference. Results from colloidal sedimentation experiments at high P\'eclet
number are found to be consistent with the results of fast compressions, as
long as appropriate boundary conditions are used. The similitude between
compression and sedimentation results suggests that the assembly pathway does
not here sensitively depend on the nature of the out-of-equilibrium dynamics.Comment: 11 pages, 8 figures and 63 reference
Design and Fabrication of Three-Dimensional Scaffolds for Tissue Engineering of Human Heart Valves
We developed a new fabrication technique for 3-dimensional scaffolds for tissue engineering of human heart valve tissue. A human aortic homograft was scanned with an X-ray computer tomograph. The data derived from the X-ray computed tomogram were processed by a computer-aided design program to reconstruct a human heart valve 3-dimensionally. Based on this stereolithographic model, a silicone valve model resembling a human aortic valve was generated. By taking advantage of the thermoplastic properties of polyglycolic acid as scaffold material, we molded a 3-dimensional scaffold for tissue engineering of human heart valves. The valve scaffold showed a deviation of only +/- 3-4% in height, length and inner diameter compared with the homograft. The newly developed technique allows fabricating custom-made, patient-specific polymeric cardiovascular scaffolds for tissue engineering without requiring any suture materials. Copyright (c) 2008 S. Karger AG, Base
Polymeric forms of carbon in dense lithium carbide
The immense interest in carbon nanomaterials continues to stimulate intense
research activities aimed to realize carbon nanowires, since linear chains of
carbon atoms are expected to display novel and technologically relevant
optical, electrical and mechanical properties. Although various allotropes of
carbon (e.g., diamond, nanotubes, graphene, etc.) are among the best known
materials, it remains challenging to stabilize carbon in the one-dimensional
form because of the difficulty to suitably saturate the dangling bonds of
carbon. Here, we show through first-principles calculations that ordered
polymeric carbon chains can be stabilized in solid LiC under moderate
pressure. This pressure-induced phase (above 5 GPa) consists of parallel arrays
of twofold zigzag carbon chains embedded in lithium cages, which display a
metallic character due to the formation of partially occupied carbon lone-pair
states in \emph{sp}-like hybrids. It is found that this phase remains the
most favorable one in a wide range of pressure. At extreme pressure (larger the
215 GPa) a structural and electronic phase transition towards an insulating
single-bonded threefold-coordinated carbon network is predicted.Comment: 10 pages, 6 figure
Critical frontier for the Potts and percolation models on triangular-type and kagome-type lattices II: Numerical analysis
In a recent paper (arXiv:0911.2514), one of us (FYW) considered the Potts
model and bond and site percolation on two general classes of two-dimensional
lattices, the triangular-type and kagome-type lattices, and obtained
closed-form expressions for the critical frontier with applications to various
lattice models. For the triangular-type lattices Wu's result is exact, and for
the kagome-type lattices Wu's expression is under a homogeneity assumption. The
purpose of the present paper is two-fold: First, an essential step in Wu's
analysis is the derivation of lattice-dependent constants for various
lattice models, a process which can be tedious. We present here a derivation of
these constants for subnet networks using a computer algorithm. Secondly, by
means of a finite-size scaling analysis based on numerical transfer matrix
calculations, we deduce critical properties and critical thresholds of various
models and assess the accuracy of the homogeneity assumption. Specifically, we
analyze the -state Potts model and the bond percolation on the 3-12 and
kagome-type subnet lattices , , for which the
exact solution is not known. To calibrate the accuracy of the finite-size
procedure, we apply the same numerical analysis to models for which the exact
critical frontiers are known. The comparison of numerical and exact results
shows that our numerical determination of critical thresholds is accurate to 7
or 8 significant digits. This in turn infers that the homogeneity assumption
determines critical frontiers with an accuracy of 5 decimal places or higher.
Finally, we also obtained the exact percolation thresholds for site percolation
on kagome-type subnet lattices for .Comment: 31 pages,8 figure
Finding the Origin of the Pioneer Anomaly
Analysis of radio-metric tracking data from the Pioneer 10/11 spacecraft at
distances between 20 - 70 astronomical units (AU) from the Sun has consistently
indicated the presence of an anomalous, small, constant Doppler frequency
drift. The drift can be interpreted as being due to a constant acceleration of
a_P= (8.74 \pm 1.33) x 10^{-8} cm/s^2 directed towards the Sun. Although it is
suspected that there is a systematic origin to the effect, none has been found.
As a result, the nature of this anomaly has become of growing interest. Here we
present a concept for a deep-space experiment that will reveal the origin of
the discovered anomaly and also will characterize its properties to an accuracy
of at least two orders of magnitude below the anomaly's size. The proposed
mission will not only provide a significant accuracy improvement in the search
for small anomalous accelerations, it will also determine if the anomaly is due
to some internal systematic or has an external origin. A number of critical
requirements and design considerations for the mission are outlined and
addressed. If only already existing technologies were used, the mission could
be flown as early as 2010.Comment: 21 SS pages, 4+1 figures. final changes for publicatio
Abdominal obesity and the prevalence of diabetes and intermediate hyperglycaemia in Chinese adults
Objective: To assess the association of indicators of general and abdominal obesity with the prevalence of type 2 diabetes (T2DM) and intermediate hyperglycaemia (IHG) in the Chinese population. Methods: We used data of 50 905 adults aged 18¿79 years in the 2002 China National Nutrition and Health Survey. Recommended Chinese cut-off values were used for BMI (24 kg/m2) and waist circumference (WC; 85 cm in men, 80 cm in women). Optimal cut-offs for waist:height ratio (WHtR) were determined from analyses of receiver-operating characteristic (ROC) curves. Results: The prevalence of T2DM and IHG was 2?6% and 1?9% respectively. ROC curve analyses indicated 0?5 as the optimal cut-off value for WHtR in both sexes. High BMI, WC and WHtR were all associated with the prevalence of glucose tolerance abnormalities, with the highest prevalence ratio (PR) for high WHtR (men: PR52?85, 95% CI 2?54, 3?21; women: PR53?10, 95% CI 2?74, 3?51). When combining BMI and WHtR, in men either a high BMI or a high WHtR alone was associated with increased risk. Among women, a high BMI without a concomitant high WHtR was not associated with increased glucose tolerance abnormalities risk, whereas a high WHtR was associated with risk irrespective of BMI. Conclusions: Among the Chinese adult population measures of central obesity are better predictors of glucose tolerance abnormalities prevalence than BMI. AWHtR cutoff point of 0?5 for both men and women can be considered as optimum for predicting (pre-) diabetes and may be a useful tool for screening and health education
- …