33,637 research outputs found

    What not to do in facial infrared thermographic measurements: A post data enhancement

    Get PDF
    The accuracy of infrared thermographic measurements depends on several factors, including movement of target. In this study, accuracy of nose tip temperatures obtained in a mental workload assessment using a thermal imaging camera were impacted by participants’ movement and camera zooming/panning. To correct these measurement errors, we compared manual facial landmark identification techniques using data labelling software with an automated deep learning-based approach utilised for facial landmark tracking and evaluated both against the built-in tracking features of the thermal camera, Thermal Spot Tracking. Using the Manual Thermal Landmark Annotation measurements as the ground truth, our results show that the Automated Facial Feature Tracking approach, which is the AI based approach performed better than the Thermal Spot Tracking as it matched comparatively more spatial coordinates and temperature datapoints as well as showed comparatively lower mean relative error. The study highlights the potential of AI in enhancing the accuracy of thermographic measurements, particularly in applications involving facial temperature analysis

    Microwave-induced resistance oscillations in a back-gated GaAs quantum well

    Full text link
    We performed effective mass measurements employing microwave-induced resistance oscillation in a tunable-density GaAs/AlGaAs quantum well. Our main result is a clear observation of an effective mass increase with decreasing density, in general agreement with earlier studies which investigated the density dependence of the effective mass employing Shubnikov- de Haas oscillations. This finding provides further evidence that microwave-induced resistance oscillations are sensitive to electron-electron interactions and offer a convenient and accurate way to obtain the effective mass.Comment: 4 pages, 4 figure

    Neural-Network Vector Controller for Permanent-Magnet Synchronous Motor Drives: Simulated and Hardware-Validated Results

    Get PDF
    This paper focuses on current control in a permanentmagnet synchronous motor (PMSM). The paper has two main objectives: The first objective is to develop a neural-network (NN) vector controller to overcome the decoupling inaccuracy problem associated with conventional PI-based vector-control methods. The NN is developed using the full dynamic equation of a PMSM, and trained to implement optimal control based on approximate dynamic programming. The second objective is to evaluate the robust and adaptive performance of the NN controller against that of the conventional standard vector controller under motor parameter variation and dynamic control conditions by (a) simulating the behavior of a PMSM typically used in realistic electric vehicle applications and (b) building an experimental system for hardware validation as well as combined hardware and simulation evaluation. The results demonstrate that the NN controller outperforms conventional vector controllers in both simulation and hardware implementation

    Analysis and Verification of Service Interaction Protocols - A Brief Survey

    Get PDF
    Modeling and analysis of interactions among services is a crucial issue in Service-Oriented Computing. Composing Web services is a complicated task which requires techniques and tools to verify that the new system will behave correctly. In this paper, we first overview some formal models proposed in the literature to describe services. Second, we give a brief survey of verification techniques that can be used to analyse services and their interaction. Last, we focus on the realizability and conformance of choreographies.Comment: In Proceedings TAV-WEB 2010, arXiv:1009.330

    The subunits analysis of R-phycoerythrin from marine red algae by isoelectric focusing

    Get PDF
    Subunit components of R-phycoerythrins (R-PEs) prepared from five marine macro red algae were analyzed by sodium dodecyl sulfate -polyarylamide gel electrophoresis (SDS-PAGE) and by isoelectric focusing (IEF) in pH gradients range of 3.0 to 9.5, 2.5 to 5.0 and 4.0 to 6.5. Riboflavin was used to catalyze polymerization of IEF gel in acidic pH gradients, and ethanolamine and HEPES were selected as cathode buffers for IEF. The pIs of the R-PE subunits existed between pH 4.9 and 5.7. A larger number of bands could be identified from IEF relative to SDS-PAGE, demonstrating that some subunits of the R-PEs which showed a certain apparent molecular weight have different pIs. This revealed that local net charge differences exist among the subunits of the R-PEs which have even the same molecular weight as well as those with various molecular weights, therefore charge-charge interaction among the subunits of the R-PEs may play an adequate role in R-PE assembly, which is consistent with the fact that the R-PEs are insensitive to surface-active reagents.Key words: Phycobiliprotein, phycoerythrin, red alga, isoelectric focusing, polyacrylamide gel electrophoresis, spectral properties
    corecore