2,803 research outputs found

    Habitual entrepreneurs in the making: how labour market rigidity and employment affects entrepreneurial re-entry

    Get PDF
    We investigate the impact of country-level labour market regulations on the re-entry decision of experienced entrepreneurs, whereby they become habitual entrepreneurs. Multilevel logit models on entry decisions among 15,709 individuals in 29 European countries show that labour market regulations have a positive influence on the decision to re-enter into entrepreneurship. This positive impact is stronger among individuals holding wage jobs at the time of re-entry compared to those that do not. Our results indicate that novice and habitual entrepreneurs may respond very differently to labour market rigidity. We discuss and provide tentative explanations for these differences, and outline potential policy implications

    Dual gene activation and knockout screen reveals directional dependencies in genetic networks.

    Get PDF
    Understanding the direction of information flow is essential for characterizing how genetic networks affect phenotypes. However, methods to find genetic interactions largely fail to reveal directional dependencies. We combine two orthogonal Cas9 proteins from Streptococcus pyogenes and Staphylococcus aureus to carry out a dual screen in which one gene is activated while a second gene is deleted in the same cell. We analyze the quantitative effects of activation and knockout to calculate genetic interaction and directionality scores for each gene pair. Based on the results from over 100,000 perturbed gene pairs, we reconstruct a directional dependency network for human K562 leukemia cells and demonstrate how our approach allows the determination of directionality in activating genetic interactions. Our interaction network connects previously uncharacterized genes to well-studied pathways and identifies targets relevant for therapeutic intervention

    Single-stranded heteroduplex intermediates in λ Red homologous recombination

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Red proteins of lambda phage mediate probably the simplest and most efficient homologous recombination reactions yet described. However the mechanism of dsDNA recombination remains undefined.</p> <p>Results</p> <p>Here we show that the Red proteins can act via full length single stranded intermediates to establish single stranded heteroduplexes at the replication fork. We created asymmetrically digestible dsDNA substrates by exploiting the fact that Redα exonuclease activity requires a 5' phosphorylated end, or is blocked by phosphothioates. Using these substrates, we found that the most efficient configuration for dsDNA recombination occurred when the strand that can prime Okazaki-like synthesis contained both homology regions on the same ssDNA molecule. Furthermore, we show that Red recombination requires replication of the target molecule.</p> <p>Conclusions</p> <p>Hence we propose a new model for dsDNA recombination, termed 'beta' recombination, based on the formation of ssDNA heteroduplexes at the replication fork. Implications of the model were tested using (i) an <it>in situ </it>assay for recombination, which showed that recombination generated mixed wild type and recombinant colonies; and (ii) the predicted asymmetries of the homology arms, which showed that recombination is more sensitive to non-homologies attached to 5' than 3' ends. Whereas beta recombination can generate deletions in target BACs of at least 50 kb at about the same efficiency as small deletions, the converse event of insertion is very sensitive to increasing size. Insertions up to 3 kb are most efficiently achieved using beta recombination, however at greater sizes, an alternative Red-mediated mechanism(s) appears to be equally efficient. These findings define a new intermediate in homologous recombination, which also has practical implications for recombineering with the Red proteins.</p

    Cerebral oxygen desaturation occurs frequently in patients with hypertension undergoing major abdominal surgery

    Get PDF
    Hypertensive patients are more likely to experience latent cerebral ischemia causing regional cerebral oxygen saturation (rSO2) decrease during general anesthesia. The aim of this prospective observational study was to assess the incidence of decreased rSO2 in hypertensive patients undergoing major abdominal surgery and the perioperative factors affecting this change in rSO2. A total of 41 hypertensive patients were enrolled and stratified according to their hypertension as controlled and uncontrolled. The intraoperative rSO2 and physiological data were routinely collected. The Mini-Mental State Exam (MMSE) was used to test cognitive function before surgery and after 4 days. Cerebral desaturation was defined as a decrease in rSO2 of more than 20% of the baseline value. There were 20 patients (49%) suffering intraoperative cerebral desaturation classified into cerebral desaturation group (group D) and those 21 without intraoperative desaturation classified into normal group (group N). The area under the curve below 90 and 80% of baseline (AUCrSO2 <90% of baseline and AUCrSO2 <80% of baseline) was lower in patients of group N (2752.4 ± 1453.3 min% and 0.0 min%) than in patients of group D (6264.9 ± 1832.3 min% and 4486.5 ± 1664.9 min%, P < 0.001). Comparing the two groups, the number of uncontrolled hypertensive individuals in group D (12/20) was significantly more than group N (4/21) (P = 0.007). A significant correlation was observed between relative decrease in MAP and relative decrease in rSO2 (r2 = 0.495, P < 0.001). Moreover, nine patients (45%) in group D occurred early postoperative cognitive function decline were more than three patients (14.3%) in group N (P = 0.031). This pilot study showed a large proportion of hypertensive patient experienced cerebral desaturation during major abdominal surgery and uncontrolled hypertension predisposed to this desaturation. NCT02147275 (registered at http://www.clinicaltrials.gov)

    Outcomes of patients with advanced cancer and KRAS mutations in phase I clinical trials.

    Get PDF
    BackgroundKRAS mutation is common in human cancer. We assessed the clinical factors, including type of KRAS mutation and treatment, of patients with advanced cancer and tumor KRAS mutations and their association with treatment outcomes.MethodsPatients referred to the Phase I Clinic for treatment who underwent testing for KRAS mutations were analyzed.ResultsOf 1,781 patients, 365 (21%) had a KRAS mutation. The G12D mutation was the most common mutation (29%). PIK3CA mutations were found in 24% and 10% of patients with and without KRAS mutations (p&lt;0.0001). Of 223 patients with a KRAS mutation who were evaluable for response, 56 were treated with a MEK inhibitor-containing therapy and 167 with other therapies. The clinical benefit (partial response and stable disease lasting ≥6 months) rates were 23% and 9%, respectively, for the MEK inhibitor versus other therapies (p=0.005). The median progression-free survival (PFS) was 3.3 and 2.2 months, respectively (p=0.09). The respective median overall survival was 8.4 and 7.0 months (p=0.38). Of 66 patients with a KRAS mutation and additional alterations, higher rates of clinical benefit (p=0.04), PFS (p=0.045), and overall survival (p=0.02) were noted in patients treated with MEK inhibitor-containing therapy (n=9) compared to those treated with targeted therapy matched to the additional alterations (n=24) or other therapy (n=33).ConclusionsMEK inhibitors in patients with KRAS-mutated advanced cancer were associated with higher clinical benefit rates compared to other therapies. Therapeutic strategies that include MEK inhibitors or novel agents combined with other targeted therapies or chemotherapy need further investigation
    corecore