45,182 research outputs found

    Microscopic Theory of Spontaneous Decay in a Dielectric

    Full text link
    The local field correction to the spontanous dacay rate of an impurity source atom imbedded in a disordered dielectric is calculated to second order in the dielectric density. The result is found to differ from predictions associated with both "virtual" and "real" cavity models of this decay process. However, if the contributions from two dielectric atoms at the same position are included, the virtual cavity result is reproduced.Comment: 12 Page

    Anomalous relaxation kinetics and charge density wave correlations in underdoped BaPb1-xBixO3

    Full text link
    Superconductivity often emerges in proximity of other symmetry-breaking ground states, such as antiferromagnetism or charge-density-wave (CDW) order. However, the subtle inter-relation of these phases remains poorly understood, and in some cases even the existence of short-range correlations for superconducting compositions is uncertain. In such circumstances, ultrafast experiments can provide new insights, by tracking the relaxation kinetics following excitation at frequencies related to the broken symmetry state. Here, we investigate the transient terahertz conductivity of BaPb1-xBixO3 - a material for which superconductivity is adjacent to a competing CDW phase - after optical excitation tuned to the CDW absorption band. In insulating BaBiO3 we observed an increase in conductivity and a subsequent relaxation, which are consistent with quasiparticles injection across a rigid semiconducting gap. In the doped compound BaPb0.72Bi0.28O3 (superconducting below Tc=7K), a similar response was also found immediately above Tc. This observation evidences the presence of a robust gap up to T=40 K, which is presumably associated with short-range CDW correlations. A qualitatively different behaviour was observed in the same material fo T>40 K. Here, the photo-conductivity was dominated by an enhancement in carrier mobility at constant density, suggestive of melting of the CDW correlations rather than excitation across an optical gap. The relaxation displayed a temperature dependent, Arrhenius-like kinetics, suggestive of the crossing of a free-energy barrier between two phases. These results support the existence of short-range CDW correlations above Tc in underdoped BaPb1-xBixO3, and provide new information on the dynamical interplay between superconductivity and charge order.Comment: 19 pages, 4 figure

    Phase properties of hypergeometric states and negative hypergeometric states

    Get PDF
    We show that the three quantum states (PoËŠ\acute{o}lya states, the generalized non-classical states related to Hahn polynomials and negative hypergeometric states) introduced recently as intermediates states which interpolate between the binomial states and negative binomial states are essentially identical. By using the Hermitial-phase-operator formalism, the phase properties of the hypergeometric states and negative hypergeometric states are studied in detail. We find that the number of peaks of phase probability distribution is one for the hypergeometric states and MM for the negative hypergeometric states.Comment: 7 pages, 4 figure

    Phase-Dependent Spontaneous Spin Polarization and Bifurcation Delay in Coupled Two-Component Bose-Einstein Condensates

    Full text link
    The spontaneous spin polarization and bifurcation delay in two-component Bose-Einstein condensates coupled with laser or/and radio-frequency pulses are investigated. We find that the bifurcation and the spontaneous spin polarization are determined by both physical parameters and relative phase between two condensates. Through bifurcations, the system enters into the spontaneous spin polarization regime from the Rabi regime. We also find that bifurcation delay appears when the parameter is swept through a static bifurcation point. This bifurcation delay is responsible for metastability leading to hysteresis.Comment: Improved version for cond-mat/021157

    Single-Dirac-Cone topological surface states in TlBiSe2 class of Topological Insulators

    Full text link
    We have investigated several strong spin-orbit coupling ternary chalcogenides related to the (Pb,Sn)Te series of compounds. Our first-principles calculations predict the low temperature rhombohedral ordered phase in TlBiTe2, TlBiSe2, and TlSbX2 (X=Te, Se, S) to be topologically Kane-Mele Z2 = -1 nontrivial. We identify the specific surface termination that realizes the single Dirac cone through first-principles surface state computations. This termination minimizes effects of dangling bonds making it favorable for photoemission (ARPES) experiments. Our analysis predicts that thin films of these materials would harbor novel 2D quantum spin Hall states, and support odd-parity topological superconductivity. For a related work also see arXiv:1003.2615v1. Experimental ARPES results will be published elsewhere.Comment: Accepted for publication in Phys. Rev. Lett. (2010). Submitted March 201

    Nonlinearity-assisted quantum tunneling in a matter-wave interferometer

    Full text link
    We investigate the {\em nonlinearity-assisted quantum tunneling} and formation of nonlinear collective excitations in a matter-wave interferometer, which is realised by the adiabatic transformation of a double-well potential into a single-well harmonic trap. In contrast to the linear quantum tunneling induced by the crossing (or avoided crossing) of neighbouring energy levels, the quantum tunneling between different nonlinear eigenstates is assisted by the nonlinear mean-field interaction. When the barrier between the wells decreases, the mean-field interaction aids quantum tunneling between the ground and excited nonlinear eigenstates. The resulting {\em non-adiabatic evolution} depends on the input states. The tunneling process leads to the generation of dark solitons, and the number of the generated dark solitons is highly sensitive to the matter-wave nonlinearity. The results of the numerical simulations of the matter-wave dynamics are successfully interpreted with a coupled-mode theory for multiple nonlinear eigenstates.Comment: 11 pages, 6 figures, accept for publication in J. Phys.

    L-functions of Symmetric Products of the Kloosterman Sheaf over Z

    Full text link
    The classical nn-variable Kloosterman sums over the finite field Fp{\bf F}_p give rise to a lisse Qˉl\bar {\bf Q}_l-sheaf Kln+1{\rm Kl}_{n+1} on Gm,Fp=PFp1−{0,∞}{\bf G}_{m, {\bf F}_p}={\bf P}^1_{{\bf F}_p}-\{0,\infty\}, which we call the Kloosterman sheaf. Let Lp(Gm,Fp,SymkKln+1,s)L_p({\bf G}_{m,{\bf F}_p}, {\rm Sym}^k{\rm Kl}_{n+1}, s) be the LL-function of the kk-fold symmetric product of Kln+1{\rm Kl}_{n+1}. We construct an explicit virtual scheme XX of finite type over SpecZ{\rm Spec} {\bf Z} such that the pp-Euler factor of the zeta function of XX coincides with Lp(Gm,Fp,SymkKln+1,s)L_p({\bf G}_{m,{\bf F}_p}, {\rm Sym}^k{\rm Kl}_{n+1}, s). We also prove similar results for ⊗kKln+1\otimes^k {\rm Kl}_{n+1} and ⋀kKln+1\bigwedge^k {\rm Kl}_{n+1}.Comment: 16 page

    Low-temperature tapered-fiber probing of diamond NV ensembles coupled to GaP microcavities

    Get PDF
    In this work we present a platform for testing the device performance of a cavity-emitter system, using an ensemble of emitters and a tapered optical fiber. This method provides high-contrast spectra of the cavity modes, selective detection of emitters coupled to the cavity, and an estimate of the device performance in the single- emitter case. Using nitrogen-vacancy (NV) centers in diamond and a GaP optical microcavity, we are able to tune the cavity onto the NV resonance at 10 K, couple the cavity-coupled emission to a tapered fiber, and measure the fiber-coupled NV spontaneous emission decay. Theoretically we show that the fiber-coupled average Purcell factor is 2-3 times greater than that of free-space collection; although due to ensemble averaging it is still a factor of 3 less than the Purcell factor of a single, ideally placed center.Comment: 15 pages, 6 figure

    Ab-initio GMR and current-induced torques in Au/Cr multilayers

    Full text link
    We report on an {\em ab-initio} study of giant magnetoresistance (GMR) and current-induced-torques (CITs) in Cr/Au multilayers that is based on non-equilibrium Green's functions and spin density functional theory. We find substantial GMR due primarily to a spin-dependent resonance centered at the Cr/Au interface and predict that the CITs are strong enough to switch the antiferromagnetic order parameter at current-densities ∼100\sim 100 times smaller than typical ferromagnetic metal circuit switching densities.Comment: 8 pages, 6 figure
    • …
    corecore